时间:2014.07.01
地点:基地
--------------------------------------------------------------------------------
零、简述
今天学习两种模型选择方法,一种是正则化方法,还一种是交叉验证。
--------------------------------------------------------------------------------
一、正则化(regularization)
正则化(regularization)是模型选择的一种典型方法。是结构风险最小化的策略实现。它在经验风险上还加上了一个正则化项(regularizer)或罚项(penalty term),在这里,正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值就越大。
正则化

本文介绍了机器学习中的正则化和交叉验证技术。正则化通过添加正则化项来控制模型复杂度,防止过拟合,包括L1和L2范数形式。交叉验证则是有限数据下有效选择模型的方法,如简单交叉验证、S折交叉验证和留一交叉验证,通过多次训练和测试来评估模型性能。
最低0.47元/天 解锁文章
2610

被折叠的 条评论
为什么被折叠?



