机器学习(二):模型评估与模型选择、正则化与交叉验证、L0,L1,L2正则化、泛化能力

本文深入探讨机器学习中的模型评估与选择,重点关注正则化(L0、L1、L2)以及交叉验证方法。通过训练误差与测试误差的分析,揭示过拟合现象,并强调泛化能力的重要性。正则化通过添加正则化项减少模型复杂度,防止过拟合,L1范数可实现特征选择,L2范数则有助于权重衰减。交叉验证提供了一种有效选择模型的方法,以提高模型对未知数据的预测能力。
摘要由CSDN通过智能技术生成

训练误差与测试误差

机器学习的目的是使学习到的模型不仅对已知数据而且对未知数据都能有很好的预测能力。不同的学习方法会给出不同的模型。当损失函数给定时, 基于损失函数的模型的训练误差(training error) 和模型的测试误差(test error) 就自然成为学习方法评估的标准。机器学习方法具体采用的损失函数未必是评估时使用的损失函数。 当然, 让两者一致是比较理想的。 

训练误差的大小, 对判断给定的问题是不是一个容易学习的问题是有意义的, 但本质上不重要。

测试误差反映了学习方法对未知的测试数据集的预测能力, 是学习中的重要概念。

显然, 给定两种学习方法, 测试误差小的方法具有更好的预测能力, 是更有效的方法。

通常将学习方法对未知数据的预测能力称为泛化能力(generalizationability)

过拟合与模型选择

当假设空间含有不同复杂度(例如, 不同的参数个数) 的模型时, 就要面临模型选择(model selection) 的问题。

我们希望选择或学习一个合适的模型。

如果在假设空间中存在“真”模型, 那么所选择的模型应该逼近真模型。 具体地, 所选择的模型要与真模型的参数个数相同, 所选择的模型的参数向量与真模型的参数向量相近。

如果一味追求提高对训练数据的预测能力, 所选模型的复杂度则往往会比真模型更高。 这种现象称为过拟合(over-fitting) 。

过拟合是指学习时选择的模型所包含的参数过多, 以致于出现这一模型对已知数据预测得很好, 但对未知数据预测得很差的现象。 可以说模型选择旨在避免过拟合并提高模型的预测能力。

下面, 以多项式函数拟合问题为例, 说明过拟合与模型选择。 这是一个回归问题。 

解决这一问题的方法可以是这样的. 首先确定模型的复杂度, 即确定多项式的次数; 然后在给定的模型复杂度下, 按照经验风险最小化的策略, 求解参数, 即多项式的系数, 具体地, 求以下经验风险最小化: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值