Coursea-吴恩达-machine learning学习笔记(九)【week 5之Neural Networks: Learning】

神经网络模型存在训练集:
{(x(1),y(1)),(x(2),y(2)),,(x(m),y(m))} { ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , ⋯ , ( x ( m ) , y ( m ) ) }
这里写图片描述
常用的符号表示:

  • L L :神经网络的层数;
  • Sl:第 l l 层的单元数(不包含偏置单元);
  • K:输出单元的数量。

神经网络有两种分类:

  1. 二元分类
    y=0 y = 0 1 1 ,只有1个输出单元,hΘ(x)是一个实数,即 SL=1 S L = 1
  2. 多类别分类( K K 个不同类)
    K个输出单元, hΘ(x) h Θ ( x ) 是一个 K K 维向量,即SL=K(K3)

神经网络的代价函数:
hΘ(x)Rk h Θ ( x ) ∈ R k (hΘ(x))i ( h Θ ( x ) ) i 为第 i i 个输出

J(Θ)=1m[i=1mk=1Kyk(i)log((hΘ(x(i)))k)+(1yk(i))log(1(hΘ(x(i)))k)]+λ2ml=1L1i=1Slj=1Sl+1(Θji(l))2

当前 Θ Θ 矩阵的列数等于当前层的单元数(包括偏置单元),当前 Θ Θ 矩阵的行数等于下一层的单元数(不包括偏置单元)。
上式中的双重求和将输出层的每个单元的逻辑回归代价相加,三重求和将整个网络中的所有 Θ Θ 的平方相加

反向传播算法:让代价函数最小化的算法。
最小化 J(Θ) J ( Θ ) ,我们需要计算 J(Θ) J ( Θ ) Θ(l)ijJ(Θ) ∂ ∂ Θ i j ( l ) J ( Θ )

如上图所示神经网络,当只有1个训练样本 (x,y) ( x , y ) 时:
前向传播算法
a(1)=x ⇒ a ( 1 ) = x
Z(2)=Θ(1)a(1) ⇒ Z ( 2 ) = Θ ( 1 ) a ( 1 )
a(2)=g(Z(2))(add a(2)0) ⇒ a ( 2 ) = g ( Z ( 2 ) ) ( a d d   a 0 ( 2 ) )
Z(3)=Θ(2)a(2) ⇒ Z ( 3 ) = Θ ( 2 ) a ( 2 )
a(3)=g(Z(3))(add a(3)0) ⇒ a ( 3 ) = g ( Z ( 3 ) ) ( a d d   a 0 ( 3 ) )
Z(4)=Θ(3)a(3) ⇒ Z ( 4 ) = Θ ( 3 ) a ( 3 )
a(4)=hΘ(x)=g(Z(4)) ⇒ a ( 4 ) = h Θ ( x ) = g ( Z ( 4 ) )
反向传播算法
δ(l)j δ j ( l ) l l 层第j个单元的误差
以上图为例: δ(4)j=a(4)jyj ⇒ δ j ( 4 ) = a j ( 4 ) − y j
注:此处 a(4)j a j ( 4 ) 等同于 (hΘ(x))j ( h Θ ( x ) ) j yj y j 即输出向量的第 j j 个元素值
将上式向量化:δ(4)=a(4)y
δ(3)=(Θ(3))Tδ(4).g(Z(3))g(Z(3)) ⇒ δ ( 3 ) = ( Θ ( 3 ) ) T δ ( 4 ) . ∗ g ′ ( Z ( 3 ) ) g ′ ( Z ( 3 ) ) g(Z(3)) g ( Z ( 3 ) ) 的导数且 g(Z(3))=a(3).(1a(3)) g ′ ( Z ( 3 ) ) = a ( 3 ) . ∗ ( 1 − a ( 3 ) )
δ(2)=(Θ(2))Tδ(3).g(Z(2))g(Z(2)) ⇒ δ ( 2 ) = ( Θ ( 2 ) ) T δ ( 3 ) . ∗ g ′ ( Z ( 2 ) ) g ′ ( Z ( 2 ) ) g(Z(2)) g ( Z ( 2 ) ) 的导数且 g(Z(2))=a(2).(1a(2)) g ′ ( Z ( 2 ) ) = a ( 2 ) . ∗ ( 1 − a ( 2 ) )
Θ(l)ijJ(Θ)=a(l)jδ(l+1)i ⇒ ∂ ∂ Θ i j ( l ) J ( Θ ) = a j ( l ) δ i ( l + 1 ) (忽略 λ λ 正则化项)

当有 m m 个训练样本{(x(1),y(1)),(x(2),y(2)),,(x(m),y(m))}时:
Δ(l)ij=0(for all l,i,j) Δ i j ( l ) = 0 ( f o r   a l l   l , i , j ) (注: Δ Δ δ δ 的大写)
fori=1tom: ⇒ f o r i = 1 t o m :
a(1)=x(i) a ( 1 ) = x ( i )
利用前向传播算法计算 a(l)(for l=2,3L) a ( l ) ( f o r   l = 2 , 3 ⋯ L )
y(i) y ( i ) ,计算 δ(L)=a(L)y(i) δ ( L ) = a ( L ) − y ( i )
计算 δ(L1),δ(L2),,δ(2) δ ( L − 1 ) , δ ( L − 2 ) , ⋯ , δ ( 2 ) (注: δ(l)=((Θ(l))Tδ(l+1)).a(l).(1a(l)) δ ( l ) = ( ( Θ ( l ) ) T δ ( l + 1 ) ) . ∗ a ( l ) . ∗ ( 1 − a ( l ) ) )
Δ(l)ij:=Δ(l)ij+a(l)jδ(l+1) ⇒ Δ i j ( l ) := Δ i j ( l ) + a j ( l ) δ ( l + 1 ) 向量化该式: Δ(l):=Δ(l)+δ(l+1)(a(l))T Δ ( l ) := Δ ( l ) + δ ( l + 1 ) ( a ( l ) ) T (注:此处应去掉 δ(l+1)0 δ 0 ( l + 1 ) )
  ⇒   (跳出循环)
 D(l)ij:=1m(Δ(l)ij+λΘ(l)ij)if j0 ⇒   D i j ( l ) := 1 m ( Δ i j ( l ) + λ Θ i j ( l ) ) i f   j ≠ 0
 D(l)ij:=1mΔ(l)ijif j=0 ⇒   D i j ( l ) := 1 m Δ i j ( l ) i f   j = 0
  ⇒   (注: Θ(l) Θ ( l ) 的第1列不正则化,上式可以向量化去掉 ij i j )
 Θ(l)ijJ(Θ)=D(l)ij ⇒   ∂ ∂ Θ i j ( l ) J ( Θ ) = D i j ( l )

对于只有一个输出单元的神经网络: δ(l)j δ j ( l ) a(l)j a j ( l ) ( l l 层第j个单元)的代价误差;
更正式的表达: δ(l)j=Z(l)jcost(i)(j0) δ j ( l ) = ∂ ∂ Z j ( l ) c o s t ( i ) ( j ⩾ 0 ) 其中, cost(i)=y(i)log(hΘ(x(i)))+(1y(i))log(1hΘ(x(i))) c o s t ( i ) = y ( i ) l o g ( h Θ ( x ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − h Θ ( x ( i ) ) )

利用高级最优化算法最小化 J(Θ) J ( Θ )

function[jVal,gradient] = costFunction(theta)
...
optTheta = fminunc(@costFunction,initialTheta,options)

这种方法中, theta,gradient t h e t a , g r a d i e n t 值均为向量。

对于神经网络(4层为例):
Θ(1),Θ(2),Θ(3) Θ ( 1 ) , Θ ( 2 ) , Θ ( 3 ) —-矩阵( Theta1,Theta2,Theta3 T h e t a 1 , T h e t a 2 , T h e t a 3 )
D(1),D(2),D(3) D ( 1 ) , D ( 2 ) , D ( 3 ) —-矩阵( D1,D2,D3 D 1 , D 2 , D 3 )
为了使用优化算法,需要将矩阵展开成向量:

thetaVector = [Theta1(:);Theta2(:);Theta3(:)];
deltaVector = [D1(:);D2(:);D3(:)];

如果 Theta1 T h e t a 1 的维度为 10×11 10 × 11 Theta2 T h e t a 2 的维度为 10×11 10 × 11 Theta3 T h e t a 3 的维度为 1×11 1 × 11 ,则从向量中返回矩阵的方法如下:

Theta1 = reshape(thetaVector(1:110),10,11);
Theta2 = reshape(thetaVector(111:220),10,11);
Theta3 = reshape(thetaVector(221:231),1,11);

总结:有初始参数 Θ(1),Θ(2),Θ(3) Θ ( 1 ) , Θ ( 2 ) , Θ ( 3 ) ,展开后获得 initialTheta i n i t i a l T h e t a ,传值给:

fminunc(@costFunction,initialTheta,options)
function[jVal,gradientVec] = costFunction(thetaVec)

上面代价函数 costFunction c o s t F u n c t i o n 内的具体步骤如下:
  ⇒   thetaVec t h e t a V e c 中得到 Θ(1),Θ(2),Θ(3) Θ ( 1 ) , Θ ( 2 ) , Θ ( 3 )
  ⇒   使用前向传播及反向传播算法计算 D(1),D(2),D(3) D ( 1 ) , D ( 2 ) , D ( 3 ) J(Θ) J ( Θ )
  ⇒   展开 D(1),D(2),D(3) D ( 1 ) , D ( 2 ) , D ( 3 ) 获得 gradientVec g r a d i e n t V e c

梯度检测:可以减少梯度下降存在错误的风险。
θRn θ ∈ R n ( θ θ Θ(1),Θ(2),Θ(3) Θ ( 1 ) , Θ ( 2 ) , Θ ( 3 ) 的展开向量)
θ=θ1,θ2,θ3,,θn θ = θ 1 , θ 2 , θ 3 , ⋯ , θ n
由于 ΘJ(Θ)J(Θ+ϵ)J(Θϵ)2ϵ ∂ ∂ Θ J ( Θ ) ≈ J ( Θ + ϵ ) − J ( Θ − ϵ ) 2 ϵ ( ϵ ϵ 104 10 − 4 即可)
所以:
θ1J(Θ)J(θ1+ϵ,θ2,θ3,,θn)J(θ1ϵ,θ2,θ3,,θn)2ϵ ∂ ∂ θ 1 J ( Θ ) ≈ J ( θ 1 + ϵ , θ 2 , θ 3 , ⋯ , θ n ) − J ( θ 1 − ϵ , θ 2 , θ 3 , ⋯ , θ n ) 2 ϵ
θ2J(Θ)J(θ1,θ2+ϵ,θ3,,θn)J(θ1,θ2ϵ,θ3,,θn)2ϵ ∂ ∂ θ 2 J ( Θ ) ≈ J ( θ 1 , θ 2 + ϵ , θ 3 , ⋯ , θ n ) − J ( θ 1 , θ 2 − ϵ , θ 3 , ⋯ , θ n ) 2 ϵ

θnJ(Θ)J(θ1,θ2,θ3,,θn+ϵ)J(θ1,θ2,θ3,,θnϵ)2ϵ ∂ ∂ θ n J ( Θ ) ≈ J ( θ 1 , θ 2 , θ 3 , ⋯ , θ n + ϵ ) − J ( θ 1 , θ 2 , θ 3 , ⋯ , θ n − ϵ ) 2 ϵ

Octave O c t a v e 中的实现代码如下:

EPSILON = 1e-4;
for i = 1:n,
    thetaPlus = theta;
    thetaPlus(i) = thetaPlus(i) + EPSILON;
    thetaMinus = theta;
    thetaMinus(i) = thetaMinus(i) + EPSILON;
    gradApprox(i) = (J(thetaPlus)-J(thetaMinus))/(2*EPSILON);
end;

check gradApproxDvec c h e c k   g r a d A p p r o x ≈ D v e c

梯度检测总结:

  1. 利用反向传播算法计算 Dvec D v e c ( D(1),D(2),D(3) D ( 1 ) , D ( 2 ) , D ( 3 ) 的展开);
  2. 利用梯度检测算法计算 gradApprox g r a d A p p r o x
  3. 确保两者相近;
  4. 关闭梯度检测算法,用反向传播算法学习。

确保在开始训练模型之前关闭梯度检测算法,否则运算会很慢。

随机初始化
当使用梯度下降或高级优化算法时,需要设置初始值:

optTheta = fminunc(@costFunction,initialTheta,options);

对于神经网络来说,若 θ θ 全初始化为0,当进行反向传播算法时,所有的单元会更新成相同的值,故采用下列代码进行随机初始化: θ(l)ij[ϵ,ϵ] θ i j ( l ) ∈ [ − ϵ , ϵ ]
如果 Theta1 T h e t a 1 10×11 10 × 11 矩阵, Theta2 T h e t a 2 10×11 10 × 11 矩阵, Theta3 T h e t a 3 1×11 1 × 11 矩阵:

Theta1 = rand(10,11)*(2*INIT_EPSILON)-INIT_EPSILON;
Theta2 = rand(10,11)*(2*INIT_EPSILON)-INIT_EPSILON;
Theta3 = rand(1,11)*(2*INIT_EPSILON)-INIT_EPSILON;

rand(x,y) r a n d ( x , y ) 为生成 x×y x × y 矩阵,元素值 (0,1) ∈ ( 0 , 1 )
此处 EPSILON E P S I L O N 与梯度检测时的不同,可以取 0.12 0.12

总体总结

训练神经网络的步骤

  1. 搭建网络架构(即神经元连接方式);
    输入层单元数:特征集 x(i) x ( i ) 的维度
    输出层单元数:分类的类别数
    如果 y{1,2,3,,10} y ∈ { 1 , 2 , 3 , ⋯ , 10 } ,要将其改写成向量 y=1000or0100or00100001 y = [ 1 0 0 ⋮ 0 ] o r [ 0 1 0 ⋮ 0 ] o r [ 0 0 1 ⋮ 0 ] ⋯ [ 0 0 0 ⋮ 1 ]
    默认规则:推荐设置一个隐藏层,如果隐藏层 >1 > 1 ,则每个隐藏层包含相同数目的单元,对于单层的具体单元数,越多越好,但越多计算量越大,一般隐藏层单元数稍大于特征数都可以接受;
  2. 随机初始化权重,将权重初始化为很小的值,接近于0;
  3. 执行前向传播算法,获取每个输入 x(i) x ( i ) 对应的 hΘ(x(i)) h Θ ( x ( i ) )
  4. 利用代码计算代价函数 J(Θ) J ( Θ )
  5. 执行反向传播算法计算 Θ(l)jkJ(Θ) ∂ ∂ Θ j k ( l ) J ( Θ )
    for i=1:m, f o r   i = 1 : m ,
    { {
    执行前向传播算法和反向传播算法利用 (x(i),y(i)) ( x ( i ) , y ( i ) ) 获取激励 a(l) a ( l ) 和误差 δ(l) (for l=2,,L) δ ( l )   ( f o r   l = 2 , ⋯ , L )
    Δ(l):=Δ(l)+δ(l+1)(a(l))T Δ ( l ) := Δ ( l ) + δ ( l + 1 ) ( a ( l ) ) T
    } }
    计算 Θ(l)jkJ(Θ) ∂ ∂ Θ j k ( l ) J ( Θ )
  6. 利用梯度检测比较反向传播算法计算得到的 Θ(l)jkJ(Θ) ∂ ∂ Θ j k ( l ) J ( Θ ) 和通过 J(Θ) J ( Θ ) 梯度下降数值计算得到的 Θ(l)jkJ(Θ) ∂ ∂ Θ j k ( l ) J ( Θ ) ,然后注释掉梯度检测的代码;
  7. 利用梯度下降或最优化算法最小化 J(Θ) J ( Θ ) ,得到参数 Θ Θ
    注:对于神经网络, J(Θ) J ( Θ ) 是一个非凸函数,通常得到局部最小值。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值