论文笔记
文章平均质量分 90
你吃过卤汁牛肉吗
这个作者很懒,什么都没留下…
展开
-
structure-from-motion revisited论文笔记
1. Introduction提出一种新的SFM技术SFM主要分为三类:增量式(most popular)\分层式\全局式;但是目前在鲁棒性\精确度\完整性\扩展性方面还需要提高2. Review of Structure-from-Motion2.1 Correspondence Search---对应搜索 (1)特征提取:SIFT (2)特征...原创 2018-12-17 21:09:37 · 4120 阅读 · 1 评论 -
Reconstruction the world* in six days 论文笔记
Abstract文章主要提出一个大规模的SFM框架,只使用一台计算机(several tens of millions of images)完成世界规模的重建(之前都是城市规模的)。· 实现的技术:1. 用了streaming-based framework来进行connected component发现; 2. 系统采用基于augment词袋...原创 2018-12-15 16:11:36 · 446 阅读 · 0 评论 -
GCN论文笔记
Large Kernel Matters——Improve Semantic Segmentation by Global Convolution NetworkGCN的pytorch实现:https://github.com/SConsul/Global_Convolutional_Network论文地址:https://arxiv.org/pdf/1703.02719.pdf一....原创 2019-06-27 19:29:44 · 1658 阅读 · 0 评论 -
deeplabv1论文笔记
github:https://github.com/CoinCheung/Deeplab-Large-FOV原文链接:http://de.arxiv.org/pdf/1412.7062deeplab结构简介(1)deeplab v1论文中backbone是VGG,但是现在都是采用ResNet,因为特征提取的效果更好。(2) skip了VGG的最后两个池化层,直接从更大分...转载 2019-06-27 18:56:22 · 902 阅读 · 0 评论 -
反卷积的棋盘格效应
参考链接:https://www.zhihu.com/question/43609045/answer/130868981反卷积只能恢复出原信号的shape,而并不能恢复value,若想要恢复出value还需要learn的过程例如在tensorflow中反卷积的实现:参考链接:https://www.jianshu.com/p/f0674e48894c从3*3 -> 6...原创 2019-06-27 16:21:19 · 2796 阅读 · 3 评论 -
resnet论文笔记
1. introduction1.1 问题的提出越深越好有实验证明网络越深,效果越好(深度神经网络通过层的堆叠,集成了low/mid/high level的特征,层数越深level越丰富)深带来的梯度爆炸问题主要通过normalized initialization和intermediate normalization layer,让网络可以达到数十层解决了梯度...原创 2019-07-17 22:33:01 · 454 阅读 · 0 评论