全局平均池化是在论文Network in Network中提出的,原文中全局平均池化的作用和优点:
思想:对于输出的每一个通道的特征图的所有像素计算一个平均值,经过全局平均池化之后就得到一个 维度==类别数 的特征向量,然后直接输入到softmax层
作用:代替全连接层,可接受任意尺寸的图像
优点:1)可以更好的将类别与最后一个卷积层的特征图对应起来(每一个通道对应一种类别,这样每一张特征图都可以看成是该类别对应的类别置信图)
2)降低参数量,全局平均池化层没有参数,可防止在该层过拟合
3)整合了全局空间信息,对于输入图片的spatial translation更加鲁棒
图解: