深度求索公司和DeepSeek发展

 

2025年春节期间,最炸裂的AI事件,便是中国黑马DeepSeek横扫美国下载榜。

开年后的2月8日,西安举办了“’DeepSeeK的影响与启示’特别论坛”,

后续,西安和全国还有一系列有关DeepSeek的活动。

 

正如唐代韩愈所言"一举成名天下知",而今天我们要聚焦的,正是这个让中国AI界引以为傲的名字——深度求索公司,

深度启星河,求索数作舟。

纵横织云篆,天工开风流。

 

深度求索是谁?DeepSeek凭什么在短短两年内异军突起?AI流量爆炸将如何重塑商业版图?企业如何抓住这波智能革命红利?我将从“DeepSeek大语言模型技术体系和企业应用”的视角进行回答。

 

今天我将回答第一个问题。深度求索是谁?即“深度求索公司和DeepSeek发展”。

从深度求索公司、该公司发展历程、目前AI大模型整体发展情况,来进行解读。

 

首先,我们了解一下深度求索公司。

该公司全称“杭州深度求索人工智能基础技术研究有限公司”。这家成立于2023年的杭州企业,正在用"中国速度"改写AGI发展史。

 

他们的目标不是普通AI,而是真正会思考的AGI——就像给你的手机装了个‘数字大脑’!"

 

大家可能有疑问:AGI与AI究竟有何不同?

 

有人可能会说,AGI比AI,多了一个G。

 

Artificial General Intelligence,通用人工智能,简称AGI。

与传统的AI不同,AGI的目标是使计算机系统具备像人一样的高层次智能,能够进行复杂的推理、学习、感知和决策,并且适应新的任务和环境‌。

 

试想一下,未来会不会有一个比你更聪明的AI的你呢?

 

接下来,我们梳理一下DeepSeek的发展历程:

里程碑1(2023年7月17日):创始团队带着"数据蒸馏"技术入场,这项能让数据价值提升300%的核心专利,成为他们撬动AGI的第一根杠杆。

 

里程碑2(2024年1月5日):当业界还在争论大模型方向时,DeepSeek用7款垂直模型矩阵惊艳市场!从代码生成到视觉理解,他们证明了"专业选手也能玩转全能赛场"。

 

里程碑3(2025年1月31日):这一天,中国AI首次登顶全球榜单!DeepSeek-R1不仅挤掉ChatGPT登上美区榜首,更在48小时内完成中国三大电信运营商+腾讯云+吉利汽车的生态布局。

 

里程碑4(2025年2月5日):当国家超算互联网平台亮起DeepSeek的指示灯,标志着中国自主AGI正式进入"国家队"序列!

 

对比OpenAI的发展速度,DeepSeek把硅谷节奏甩开18个月!

秘诀在于他们的模型军团:VL系列玩转视觉语言,R1专攻科研优化,V3版本直接入驻国家超算中心!

 

这波AI海啸带来什么?

千亿参数模型已成标配,单次训练烧掉650万美元!

但更可怕的是应用革命——从医疗诊断到汽车智驾,20个以上行业正在被重构!

 

接下来,我们来看看当前AI竞技场呈现的六大特征:

1,规模竞赛:千亿参数已成标配。

各厂商的模型参数量从数百万迅速扩展到数千亿,通常依赖数千个GPU或TPU进行计算。

 

2,性能突破:翻译准确率突破98.7%。

大模型在文本生成、翻译、问答等任务上表现优异。

 

3,场景裂变:从医疗影像到智能制造的20个以上落地场景。

已经广泛的商业应用,加速科学研究进程。

 

4,暗礁潜藏:单次训练成本最高达650万美元。

计算成本高,数据质量要求高,可能引发伦理问题。

 

5,未来战场:多模态融合已成决胜关键。

未来重点是提高训练效率,提升可解释性,发展多模态融合。

 

6,中国力量:60家以上企业组成的"智能军团"。

著名国产大模型产品有:百度文心一言,阿里巴巴通义千问,腾讯混元大模型,华为盘古大模型,字节跳动云雀大模型,商汤科技书生,科大讯飞星火大模型,智谱AI的GLM系列,深度求索的DeepSeek-V3,澜舟科技孟子大模型,MiniMax的ABAB大模型,零一万物Yi系列,百川智能Baichuan系列,月之暗面Kimi Chat,昆仑万维天工大模型。

 

这个名单里面,有没有你熟悉的公司或产品?

特别提醒各位关注这个"黄金三角":BAT的生态优势、华为的硬核实力、DeepSeek的技术锐度——这可能是未来三年最具看点的竞争格局。

 

深度启星河,求索数作舟。当我们回望这两年的AI激变史,会发现DeepSeek的故事正是中国科技创新的完美注脚。由于时间关系,关于“深度求索公司和DeepSeek发展”今天先和大家聊到这里,如果各位对相关内容感兴趣,我们可以在评论区继续探讨。我是赵哥,讲方案、聊观点,欢迎评论、转发!

 

### DeepSeek 深度求索平台简介 DeepSeek 是由深度求索公司开发的一个先进的人工智能研究技术服务平台。该平台专注于大规模预训练模型的研究发展,在20241月11推出了名为 DeepSeekMoE 的新型混合专家(MoE, Mixture of Experts)架构的语言模型,这标志着在追求极致专家特化方面迈出了重要一步[^1]。 ### 使用指南 #### 准备工作 为了能够顺利使用 DeepSeek 提供的技术服务,建议先完成如下准备工作: - **环境配置**:确保本地计算资源满足最低硬件需求,包括但不限于 GPU 支持 CUDA 版本匹配等。 - **软件安装**:按照官方文档指引安装必要的依赖库工具包,比如 Python 环境及相关机器学习框架。 ```bash pip install torch transformers datasets ``` #### 获取访问权限 对于有兴趣参与或利用 DeepSeek 技术成果的研究人员来说,可以通过注册成为社区成员来获取更多的支持服务。具体操作可以参照官方网站上的说明进行申请流程。 #### 数据集准备 当涉及到特定任务时,如微调已有的大语言模型(LLM),则需准备好相应的数据集用于训练过程中的输入。这些数据应当经过清洗处理并转换为目标格式以便于后续加载到模型中去。 ```python from datasets import load_dataset dataset = load_dataset('path/to/your/dataset') print(dataset['train'][0]) ``` #### 实验设计与执行 根据个人目标设定实验方案,选择合适的预训练模型作为起点,并对其进行定制化的调整以适应具体的业务场景。例如,如果目的是提高某个垂直领域的对话质量,则可以在原有基础上加入领域专业知识来进行增强。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "deepseek-moe-base" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) input_text = "你好,我想了解一下关于..." inputs = tokenizer(input_text, return_tensors="pt") with torch.no_grad(): outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值