数学公式推导——理解梯度消失和梯度爆炸

梯度消失和梯度爆炸的定义

  • 梯度消失:又叫梯度弥散。是指模型梯度在反向传播时,梯度值接近零,导致模型权重不能正常更新,使模型无法正常收敛的现象;
  • 梯度爆炸:是指模型梯度在反向传播使,梯度值无限扩大,导致模型权重趋于无穷,使模型无法正常收敛的现象。常常伴随着loss为nan的现象。

数学公式解释

梯度消失和梯度爆炸都可以用 y = ( x ) n y={\left( {\rm{x}} \right)^{\rm{n}}} y=(x)n 来解释,其中n表示模型层数,当n很大且x大于1时,y会趋于无穷大;而当x小于1时,随着n增大,y会趋于无穷小。从此处我们也可以看出,无论是梯度爆炸还是梯度消失,都是发生在远离输出的底层网络。
那现在的问题是,x在梯度反向传播时表示什么?什么情况会导致x>0; 或者x < 0 呢

链路法则下的x

链路法则下的求导可以分为两步,第一步是损失函数对logit的导数;第二步是当前层输出(logit是最后一层的输出)对前一层输出的导数;

损失函数对logit的导数

我们以交叉熵损失函数为例:设分类模型共 m m m个类别,其中计算梯度的样本标签为 k k k,损失函数为 L o s s Loss Loss,最后一层模型输出logit为 x x x, 则损失函数可以表示为:
y k = e x k ∑ i = 1 m e x i {y_k} = \frac{{{e^{{x_k}}}}}{{\sum\limits_{i = 1}^m {{e^{{x_i}}}} }} yk=i=1mexiexk L o s s = − log ⁡ ( y k ) Loss = - \log ({y_k}) Loss=log(yk)
对其求导可得:
∂ L o s s ∂ x = [ y 1 , y 2 , . . . y k − 1 , . . . y m ] \frac{{\partial Loss}}{{\partial x}} = [{y_1},{y_2},...{y_{k}-1},...{y_m}] xLoss=[y1,y2,...yk1,...ym]

当前层输出和前一层输出的导数

我们假设,每一层由一个激活函数 f f f和一个全连接层 W x Wx Wx构成, 则 x n = f ( W x n − 1 ) {{\text{x}}_n} = f(W{x_{n - 1}}) xn=f(Wxn1), 对其求导: ∂ x n ∂ x n − 1 = f − 1 ∗ W \frac{{\partial {x_n}}}{{\partial {x_{n - 1}}}} = {f^{ - 1}}*W xn1xn=f1W,则通过递归法则可知, ∂ x n ∂ x n − k = ( f − 1 ) k ∗ W k \frac{{\partial {x_n}}}{{\partial {x_{n - k}}}} = ({f^{ - 1}})^k*W^k xnkxn=(f1)kWk, 可知,此处的 ∂ x n ∂ x n − 1 \frac{{\partial {x_n}}}{{\partial {x_{n - 1}}}} xn1xn就近似等于前面提到的链路法则下的 x x x,当激活函数的导数 f − 1 f^{ - 1} f1小于1时, ∂ x n ∂ x n − k \frac{{\partial {x_n}}}{{\partial {x_{n - k}}}} xnkxn倾向于趋近零(对应梯度消失),而当 W W W大于1时, ∂ x n ∂ x n − k \frac{{\partial {x_n}}}{{\partial {x_{n - k}}}} xnkxn倾向于趋近无穷大(对应梯度爆炸)

如何解决梯度消失和梯度爆炸

解决梯度消失
  • 修改激活函数,使 f − 1 f^{-1} f1不小于1,比如,采用relu替换sigmoid激活函数
  • 残差连接,将 x n = f ( W x n − 1 ) {{\text{x}}_n} = f(W{x_{n - 1}}) xn=f(Wxn1)修改为 x n = f ( W x n − 1 + x n − 1 ) {{\text{x}}_n} = f(W{x_{n - 1}}+x_{n - 1}) xn=f(Wxn1+xn1)
  • 层连接输入前进行标准化
解决梯度爆炸
  • 梯度裁剪。使每一层的梯度都小于1
  • 权重正则化或者权重衰减。权重每一步迭代更新时,都乘以一个小于1的因子
  • 层连接输入前进行标准化
  • 预训练+模型微调(微调时,学习率一般设置较低)
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
循环神经网络(RNN)中的梯度消失问题是由于反向传播算法中的链式法则导致的。如果在RNN中使用标准的反向传播算法,每个时间步的梯度将乘以一个矩阵,这个矩阵也就是RNN的权重矩阵。如果这个权重矩阵的所有特征值都小于1,那么在反向传播中,梯度会在时间步骤中指数级地减小,这就是所谓的梯度消失问题。 具体地,我们可以考虑一个时间步骤为t的RNN单元,其输入为$x_t$,输出为$h_t$,权重矩阵为$W$,激活函数为$f$。假设我们的目标是最小化损失函数$L$,则RNN的参数可以通过反向传播算法来更新。 对于第$t$个时间步骤的参数更新,我们需要计算$L$对$h_t$的梯度,即$\frac{\partial L}{\partial h_t}$。由于$h_t$同时影响到后续时间步骤的输出,我们还需要计算$L$对后续时间步骤的$h_{t+1}, h_{t+2}, ...$的梯度,即$\frac{\partial L}{\partial h_{t+i}}$。根据链式法则,$\frac{\partial L}{\partial h_{t+i}}$可以表示为: $$ \frac{\partial L}{\partial h_{t+i}} = \frac{\partial L}{\partial h_{t+i-1}} \frac{\partial h_{t+i-1}}{\partial h_{t+i}} = \frac{\partial L}{\partial h_{t+i-1}} W $$ 其中,$\frac{\partial h_{t+i-1}}{\partial h_{t+i}}$就是RNN的权重矩阵$W$。因此,我们可以得到: $$ \frac{\partial L}{\partial h_t} = \sum_{i=t}^{T} \frac{\partial L}{\partial h_i} \frac{\partial h_i}{\partial h_t} = \sum_{i=t}^{T} \frac{\partial L}{\partial h_i} \prod_{j=t+1}^{i} W $$ 其中,$T$是序列的长度。从上面的公式可以看出,如果矩阵$W$的所有特征值都小于1,那么在求解$\frac{\partial L}{\partial h_t}$时,梯度会在每个时间步骤中指数级地减小,从而导致梯度消失问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值