动态规划-背包问题九讲及其代码实现

本文章所有思路来自《背包九讲》,代码实现由我自己编写,如有错误,欢迎指正。

P01: 01背包问题 

题目  
N 件物品和一个容量为 V 的背包。第 i 件物品的费用是 c[i] ,价值是 w[i] 。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。  

基本思路  
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。  

用子问题定义状态:即 f[i][v] 表示前 i 件物品恰放入一个容量为 v 的背包可以获得的最大价值。则其状态转移方程便是: f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}  

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下: 将前 i 件物品放入容量为 v 的背包中 这个子问题,若只考虑第 i 件物品的策略(放或不放),那么就可以转化为一个只牵扯前 i-1 件物品的问题。如果不放第 i 件物品,那么问题就转化为 i-1 件物品放入容量为 v 的背包中 ;如果放第 i 件物品,那么问题就转化为 i-1 件物品放入剩下的容量为 v-c[i] 的背包中 ,此时能获得的最大价值就是 f [i-1][v-c[i]] 再加上通过放入第 i 件物品获得的价值 w[i]  

注意 f[i][v] 有意义当且仅当存在一个前 i 件物品的子集,其费用总和为 v 。所以按照这个方程递推完毕后,最终的答案并不一定是 f[N] [V] ,而是 f[N][0..V] 的最大值。如果将状态的定义中的 字去掉,在转移方程中就要再加入一项 f[i][v-1] ,这样就可以保证 f[N] [V] 就是最后的答案。至于为什么这样就可以,由你自己来体会了。  

优化空间复杂度  
以上方法的时间和空间复杂度均为 O(N*V) ,其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到 O(V)  

先考虑上面讲的基本思路如何实现,肯定是有一个主循环 i=1..N ,每次算出来二维数组 f[i][0..V] 的所有值。那么,如果只用一个数组 f [0..V] ,能不能保证第 i 次循环结束后 f[v] 中表示的就是我们定义的状态 f[i][v] 呢? f[i][v] 是由 f[i-1][v] f[i-1] [v-c[i]] 两个子问题递推而来,能否保证在推 f[i][v] 时(也即在第 i 次主循环中推 f[v] 时)能够得到 f[i-1][v] f[i-1][v -c[i]] 的值呢?事实上,这要求在每次主循环中我们以 v=V..0 的顺序推 f[v] ,这样才能保证推 f[v] f[v-c[i]] 保存的是状态 f[i -1][v-c[i]] 的值。伪代码如下:  

for i=1..N 
for v=V..0 
f[v]=max{f[v],f[v-c[i]]+w[i]}; 

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i- 1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。 


代码实现:

//01背包问题
#include <iostream>
using namespace std;
const int V = 10;
const int T = 6;
int f2[T+1][V+1];
int f1[V+1];
int w[T] = {0,8, 10, 4, 5, 5};
int c[T] = {0,6, 4, 2, 2, 3};
void dpPrint(int n, int m);

int package2()	//二维数组dp
{
	for(int i = 1; i <= T; i++)//枚举物品,决定是否放入背包
		for(int v = 1; v <= V; v++)//依次增大背包容量至最大,更新每个状态的最佳值
			if(v < c[i])	//如果背包容量不够,不放物品
				f2[i][v] = f2[i-1][v];
			else		//如果背包容量足够,放入i物品,并比较放入状态与不放入状态的值,把最大值赋给当前状态
				f2[i][v] = max(f2[i-1][v], f2[i-1][v-c[i]] + w[i]);
	return f2[T][V];
}

int package1()	//一维数组dp
{
	for(int i = 0; i <= V; i++)
		f1[i] = 0;
	for(int i = 1; i <= T; i++)
		for(int v = V; v >= c[i]; v--)//从最大容量到当前物品的体积进行dp,即反向dp,则到下一个状态i时,F[v-Ci]是由状态F[i-1; v-Ci]的值
			f1[v] = max(f1[v-c[i]] + w[i], f1[v]);
	return f1[V];
}
int main()
{
	cout << package1() << endl << package2() << endl;
	dpPrint(T, V);
}

void dpPrint(int n, int m)//打印dp的过程
{
	for(int i = 0; i <= n; i++)
		f2[i][0] = i;
	for(int i = 0; i <= m; i++)
		f2[0][i] = i;
	for(int i = 0; i < n; i++)
	{
		for(int j = 0; j <= m; j++)
		{
			cout.width(4);
			cout << f2[i][j];
		}
		cout << endl;
	}
}
运行图:



ps:对应的代码把dp的过程自己模拟一次,可以更好的理解这个问题。


P02: 完全背包问题 

题目 
N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 

基本思路 
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<= v}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。 

01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。 

一个简单有效的优化 
完全背包问题有一个很简单有效的优化,是这样的:若两件物品ij满足c[i]<=c[j]w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。 

转化为01背包问题求解 
既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c [i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。 

更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log(V/c[i]))件物品,是一个很大的改进。 但我们有更优的O(VN)的算法。 * O(VN)的算法 这个算法使用一维数组,先看伪代码:  for i=1..N for v=0..V f[v]=max{f[v],f[v-c[i]]+w[i]}; 



你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑选入第i件物品这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑加选一件第i种物品这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v= 0..V的顺序循环。这就是这个简单的程序为何成立的道理。 

这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]},将这个方程用一维数组实现,便得到了上面的伪代码。 


//完全背包问题
#include <iostream>
using namespace std;
const int V = 10;
const int T = 5;
int f2[T+1][V+1];
int f1[V+1];
int w[T+1] = {0,8, 10, 4, 5, 5};
int c[T+1] = {0,6, 4, 2, 2, 3};
void dpPrint(int n, int m);

int package2()	//二维数组dp
{
	for(int i = 1; i <= T; i++)//枚举物品,决定是否放入背包
		for(int v = 1; v <= V; v++)
			for(int k = 0; k*c[i] <= v; k++)//k=0时表示不放物品i,k表示放几个i物品,v表示当前背包容量
				f2[i][v] = max(f2[i-1][v], f2[i-1][v-k*c[i]] + k*w[i]);
	return f2[T][V];
}

int package1()	//一维数组dp
{
	for(int i = 0; i <= V; i++)
		f1[i] = 0;
	for(int i = 1; i <= T; i++)
		for(int v = c[i]; v <= V; v++)
			f1[v] = max(f1[v-c[i]] + w[i], f1[v]);
	return f1[V];
}
int main()
{
	cout << package1() << endl << package2() << endl;
	dpPrint(T, V);
}

void dpPrint(int n, int m)//打印dp的过程
{
	for(int i = 0; i <= n; i++)
		f2[i][0] = i;
	for(int i = 0; i <= m; i++)
		f2[0][i] = i;
	for(int i = 0; i <= n; i++)
	{
		for(int j = 0; j <= m; j++)
		{
			cout.width(4);
			cout << f2[i][j];
		}
		cout << endl;
	}
}




P03: 多重背包问题 

题目 
N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 

基本算法 
这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1…… n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:f[i][v]=max{f[i-1][v-k*c[i]]+ k*w[i]|0<=k<=n[i]}。复杂度是O(V*∑n[i]) 

转化为01背包问题 
另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]01背包中的物品,则得到了物品数为∑n[i]01背包问题,直接求解,复杂度仍然是O(V*∑n[i]) 

但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——0..n[i]——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。 

方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]13,就将这种物品分成系数分别为1,2,4,6的四件物品。 

分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-12^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。 

这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为O(V*∑log n[i])01背包问题,是很大的改进。 

O(VN)
的算法 
多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的男人八题幻灯片上。 






  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值