人工智能之一----数学基础

一、前言

应原作者要求,后续文章中将不会出现深度学习500问相关的东西!!!如有,也会通过引用注明出处!

 

二、张量的概念

对深度学习有了解的同学一定知道TensorFlow,对TensorFlow想有一个比较深入的理解,第一个碰到的概念就是Tensor,即张量。老实说,深度学习500问第一节在我看来并没有讲清楚张量的概念,至少我看完后还是不理解张量为何物?具体大家可以阅读:

https://github.com/scutan90/DeepLearning-500-questions/tree/master/ch1_数学基础

感谢强大的知乎!!!这里总能给你惊喜!

https://www.zhihu.com/question/23720923/answer/32739132

答主翻译了一个老外对张量的形象理解:

https://www.youtube.com/watch?v=f5liqUk0ZTw

这里mark一下,后续有空翻墙看看。

看了这篇回答,我相信大家都会对张量有一个很好的理解了。

我的理解如下:

标量向量再到矩阵,前者都是后者的特殊化表示,而张量毫不意外的是更普通的事物的描述方式,前面那三兄弟都是它的特例。

如上文所述,我们通常理解的三维空间的位置表示,其实是三个基向量和三个分量组成,在约定成俗的场景下(如笛卡尔坐标系下),三个基向量一般会被省略,这就得到了我们用三个数可以表示空间中的一个点。

这里大家要牢记,以上描述,无论如何你都只能描述空间的位置,因为向量基只有一套。

张量是什么?张量是同样空间中的一点,你需要描述它的位置,同时你还需要描述这个点的其他特征,如受力情况,光照情况,颜色等等。也就是说以前的向量或者矩阵只能从一个角度来描述一个点,但是张量可以从多个角度来描述一个点,而其中一个角度对应一组基向量,多个角度就会对应多组基向量,这样为了把这个点描述清楚,就要设置每种基向量的每个分量,这种描述就是张量。

 

三、变量、随机变量和模糊变量

变量是指可以被更新的量,但是它被更新的结果是确定的,如a=1,那在a别更新前它就是100%等于1

随机变量是对随机事件的描述,它等于某个值是有一定概率的,如b=1的概率为50%,即在50%的概率下b被度量为1.

模糊变量是指具有模糊性的变量,假如模糊变量c=1在一个场景下的概率为40%,那不代表c=1的概率为40%,它在另一个场景下可能不是这个概率,即模糊变量被度量的结果仍然是不确定的。

另外,模糊性还有一个特点是模糊变量的度量大部分来源于主观判断,而随机变量大部分是对客观概念的描述,如老人这个概念,对于不同年龄层的人来说,某个人为老人的概率是不一样的。也就是说即使个体是确定的,但是结果还是随环境的改变而改变。

四、有意思的举例

在条件概率部分,作者举了一例:

一对夫妻有两个小孩,已知其中一个是女孩,则另一个是女孩子的概率是多少?(面 试、笔试都碰到过)

解答如下:

穷举法:已知其中一个是女孩,那么样本空间为男女,女女,女男,则另外一个仍然是女

生的概率就是 1/3;条件概率法:P(女|女)=P(女女)/P(女),夫妻有两个小孩,那么它的样本空间为女女,男女,

女男,男男,则 P(女女)为 1/4,P(女)=1-P(男男)=3/4,所以最后 1/3。 这里大家可能会误解,男女和女男是同一种情况,但实际上类似姐弟和兄妹是不同情况。

这里穷举法确实看起来很显然,但是总感觉有些不对。这里直接的挑战如下:

1、另一个是女孩的概率和其中一个的性别无关,所以结果应该是1/2.

2、女女这个样本和男女是否等概率?只有等概率的情况下样本空间才是平衡的。

我们做如下假设:

现在说其中一个是女孩,我们假设这个女孩为姐姐,则他们家另一个小孩儿要么是弟弟,要么是妹妹;

或者已知的女孩为妹妹,则他们家另一个要么是姐姐,要么是哥哥。

所以,看起来女女应该有姐+妹和妹+姐的区别(中文描述上没有区别罢了),因此,上述解答中的样本概率是不平衡的。

对于这个问题,我存疑!!!

这里以前有些钻牛角尖了,原解答应该是没有问题的。

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值