Python的streamplot

import matplotlib.pyplot as plt
import numpy as np

Y, X = np.mgrid[-3:3:100j, -3:3:100j]

U = X**2
V = Y - X + 2

#X lon Y lat U纬度分量 V经度分量
plt.streamplot(X, Y, U, V, linewidth=2)

plt.show()

运行效果如图
在这里插入图片描述

### Matplotlib Streamplot 示例 `streamplot` 是 `matplotlib` 提供的一个函数,用于绘制流线图(Streamline Plot)。这种类型的图表通常用来表示二维向量场中的流动方向和速度分布。以下是基于官方文档[^2] 和实际应用经验构建的示例代码: #### 示例代码 ```python import numpy as np import matplotlib.pyplot as plt # 定义网格范围 Y, X = np.mgrid[-3:3:100j, -3:3:100j] # 计算 U 和 V 的分量 (假设简单的向量场) U = -X * Y V = X ** 2 - Y ** 2 # 创建流线图 plt.streamplot(X, Y, U, V, density=1.5, linewidth=None, color='blue') # 设置标题和坐标轴标签 plt.title('Streamplot Example') plt.xlabel('X-axis') plt.ylabel('Y-axis') # 显示图像 plt.show() ``` 上述代码展示了如何通过定义二维网格以及相应的矢量分量来生成流线图。其中: - `density`: 控制流线条数密度。 - `color`: 流线的颜色属性。 --- ### 关于透明背景输出 如果希望保存带有透明背景的流线图,可以按照以下方式调整代码[^4]: ```python # 保存带透明背景的图片 plt.savefig("streamplot_transparent.png", transparent=True, bbox_inches="tight") ``` 这会将生成的流线图以 PNG 格式保存,并确保背景完全透明。 --- ### 高级定制化选项 对于更复杂的场景,比如自定义颜色映射或动态调整线宽,可以通过参数进一步优化[^5]。例如: ```python speed = np.sqrt(U**2 + V**2) lw = 2 * speed / speed.max() plt.streamplot(X, Y, U, V, density=1.5, color=speed, cmap='viridis', linewidth=lw) plt.colorbar(label='Speed Magnitude') plt.title('Advanced Streamplot with Color and Line Width Mapping') plt.show() ``` 在此基础上,`cmap` 参数允许指定不同的颜色映射方案,而 `linewidth` 动态控制每条流线的宽度。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值