yol
文章平均质量分 83
努力努力再努力tq
耐心看,总会看懂的!
追求实现文献算法的快感,追求学会一个新算法的充实感。(from hjimce的专栏)
展开
-
YOLOv2 论文解读(1)
论文地址:YOLO9000: Better, Faster, Stronger 项目主页:YOLO: Real-Time Object DetectionYOLO9000是CVPR2017的最佳论文提名。首先讲一下这篇文章一共介绍了YOLOv2和YOLO9000两个模型,二者略有不同。前者主要是YOLO的升级版,后者的主要检测网络也是YOLOv2,同时对数据集做了融合,使得模型可以...转载 2018-06-08 09:13:16 · 470 阅读 · 0 评论 -
YOLOv2 论文解读(3)
一,YOLOv2论文解读YOLO 问世已久,不过风头被SSD盖过不少,原作者自然不甘心,YOLO v2 的提出给我们带来了什么呢? 先看一下其在 v1的基础上做了哪些改进,直接引用作者的实验结果了: 条目不少,好多Trick,我们一个一个来看: A)Batch Normalization(批量规范化) 先建立这样一个观点: 对数据进行预处理(统一格式、均衡化、去噪...转载 2018-06-20 15:56:49 · 1774 阅读 · 2 评论 -
YOLO算法讲解(2)
YOLO有S*S的格子,每个格子包含B个边界框,格子对应的预测总的类别数为C种类别。总结重点:1、一张图片中有多个object,即一张图片中有多个对象,如下图所示,我们框了很多的真实框,那么S*S*B个bbox的对应的confidence怎么计算出来呢?confidence=p(object)*IOU(truth,pred),那么p(object)和IOU(truth,pred)怎么求解呢?看了一...转载 2018-07-16 11:46:52 · 2640 阅读 · 0 评论