模型压
文章平均质量分 86
努力努力再努力tq
耐心看,总会看懂的!
追求实现文献算法的快感,追求学会一个新算法的充实感。(from hjimce的专栏)
展开
-
模型压缩 | Deep Compression论文理解及Caffe源码修改(1)
1.在.cu中目前仍然是调用cpu_data接口,所以可能会增加与gpu数据交换的额外耗时,这个不影响使用,后面慢慢优化。~(已解决) 2.目前每层权值修剪的比例仍然是预设的,这个比例需要迭代试验以实现在尽可能压缩权值的同时保证精度。所以如何自动化选取阈值就成为了后面一个继续深入的课题。 3.直接用caffe跑出来的模型依然是原始大小,因为模型依然是.caffemodel类型,虽然大部分权值为...转载 2018-07-02 12:40:42 · 1754 阅读 · 0 评论 -
模型压缩 | Deep Compression论文理解及Caffe源码修改(2)
背景传统的CNN网络训练完之后,全连接层的权值矩阵动辄就几十万、几百万个参数值,可见CNN模型的庞大,但是仔细观察CNN的权值矩阵就会发现,里面有很多的参数的绝对值都很小,比如在-0.001到0.001之间,也就是说这些连接对CNN的训练或者测试结果作用很小,因此我们就可以尝试将这些小值参数去掉,既可以减小模型的规模又可以减少计算量,最重要的前提是要保证CNN的有效性,也即正确率。主要思路修改bl...转载 2018-07-02 12:47:38 · 1347 阅读 · 1 评论