ML
文章平均质量分 65
努力努力再努力tq
耐心看,总会看懂的!
追求实现文献算法的快感,追求学会一个新算法的充实感。(from hjimce的专栏)
展开
-
mAP precision recall
Precision and Recall 在模型评估时,我们往往会参照一些性能指标,最基本的如准确率和召回率。看过西瓜书的同学应该对下面这张表格很熟悉: predicted:P predicted:Factual:P TP FNactual:N FP TN 这张表其实很好记忆,横着看(actual:P和actual:N)代表实际所属的类别;竖着看(predic...转载 2018-07-11 09:43:29 · 259 阅读 · 0 评论 -
机器学习 | SVM与LR的比较
两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss。这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权...转载 2018-08-05 10:02:11 · 1161 阅读 · 1 评论 -
梯度下降 | 全量,随机,mini-batch
1,批量梯度下降法(Batch Gradient Descent) :在更新参数时都使用所有的样本来进行更新。 优点:全局最优解,能保证每一次更新权值,都能降低损失函数;易于并行实现。 缺点:当样本数目很多时,训练过程会很慢。 2,随机梯度下降法(Stochastic Gradient Descent):在更新参数时都使用一个样本来进行更新。每一次跟新参数都用一个样本,更新很多次...转载 2018-08-17 00:51:32 · 562 阅读 · 0 评论 -
参数估计 | MLE,MAP,朴素贝叶斯估计
最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。 最大似然估计中采样需满足一个很重要的假设,就...转载 2018-08-17 01:06:10 · 1301 阅读 · 0 评论 -
深度学习 | tensorflow 实现卷积原理,手写python实现卷积
从一个通道的图片进行卷积生成新的单通道图的过程很容易理解,对于多个通道卷积后生成多个通道的图理解起来有点抽象。本文以通俗易懂的方式讲述卷积,并辅以图片解释,能快速理解卷积的实现原理。最后手写python代码实现卷积过程,让Tensorflow卷积在我们面前不再是黑箱子! 注意: 本文只针对batch_size=1,padding='SAME',stride=[1,1,1,1]进...转载 2018-08-19 17:41:11 · 415 阅读 · 0 评论 -
机器学习 | 概念汇总(西瓜书)
转载请注明作者梦里茶 括号表示概念出现的其他页码 如果发现错误,请到issue中提出或者直接PR 公式采用latex编辑,MathJax渲染 整理by: ahangchen, luopengting, hscspring 概念列表 o 绪论 o 模型评估与选择 线性模型 决策树 神经网络 支持向量机 贝叶斯分类器 集成学习 聚类 ...转载 2018-08-17 11:55:12 · 296 阅读 · 0 评论 -
深度学习 | softmax,softmax loss和cross entropy
我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等。虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变得非常简单,但是你对这些层具体是怎么实现的了解吗?你对softmax,softmax loss,cross entropy了解吗?相信很多人不一定清楚。虽然网...转载 2018-08-20 16:04:54 · 672 阅读 · 0 评论