集成学习之投票法

投票法是一种集成学习策略,通过结合多个模型的预测来提高整体预测的准确性和鲁棒性。分类投票法分为硬投票和软投票,前者基于出现最频繁的类别,后者基于类别概率的加权平均。在实际应用中,基模型间效果应相近且具有一定的异质性以获得较好结果。示例中展示了如何使用KNN模型的不同邻居值创建一个硬投票集成,并通过交叉验证评估其性能。
摘要由CSDN通过智能技术生成

投票法是一种遵循少数服从多数原则的集成学习模型,通过多个模型的集成降低方差,从而提高模型的鲁棒性。

回归投票法:预测结果是所有模型预测结果的平均值。
分类投票法:预测结果是所有模型种出现最多的预测结果。

分类投票法又可以被划分为硬投票与软投票:

  • 硬投票:预测结果是所有投票结果最多出现的类。
  • 软投票:预测结果是所有投票结果中概率加和最大的类。

当投票合集中使用的模型能预测出清晰的类别标签时,适合使用硬投票。当投票集合中使用的模型能预测类别的概率时,适合使用软投票。软投票同样可以用于那些本身并不预测类成员概率的模型,只要他们可以输出类似于概率的预测分数值(例如支持向量机、k-最近邻和决策树)。

在实际应用上,想要投票法产生较好的结果,需要满足两个条件:

  • 基模型之间的效果不能差别过大。当某个基模型相对于其他基模型效果过差时,该模型很可能成为噪声。
  • 基模型之间应该有较小的同质性。例如在基模型预测效果近似的情况下,基于树模型与线性模型的投票,往往优于两个树模型或两个线性模型。

投票法的局限性在于,它对所有模型的处理是一样的,这意味着所有模型对预测的贡献是一样的。如果一些模型在某些情况下很好,而在其他情况下很差,这是使用投票法时需要考虑到的一个问题。

一个完整的例子演示投票法的使用

# 创建一个1000个样本,20个特征的随机数据集:
from sklearn.datasets import make_classification
# define dataset
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, random_state=2)
# summarize the dataset
print(X.shape, y.shape)


# 使用多个KNN模型作为基模型演示投票法,其中每个模型采用不同的邻居值K参数
def get_voting():
	# define the base models
	models = list()
	models.append(('knn1', KNeighborsClassifier(n_neighbors=1)))
	models.append(('knn3', KNeighborsClassifier(n_neighbors=3)))
	models.append(('knn5', KNeighborsClassifier(n_neighbors=5)))
	models.append(('knn7', KNeighborsClassifier(n_neighbors=7)))
	models.append(('knn9', KNeighborsClassifier(n_neighbors=9)))
	# define the voting ensemble
	ensemble = VotingClassifier(estimators=models, voting='hard')
	return ensemble

# 创建一个模型列表来评估投票带来的提升,包括KNN模型配置的每个独立版本和硬投票模型
def get_models():
	models = dict()
	models['knn1'] = KNeighborsClassifier(n_neighbors=1)
	models['knn3'] = KNeighborsClassifier(n_neighbors=3)
	models['knn5'] = KNeighborsClassifier(n_neighbors=5)
	models['knn7'] = KNeighborsClassifier(n_neighbors=7)
	models['knn9'] = KNeighborsClassifier(n_neighbors=9)
	models['hard_voting'] = get_voting()
	return models

# 接收一个模型实例,并以分层10倍交叉验证三次重复的分数列表的形式返回
def evaluate_model(model, X, y):
	cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
	scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1, error_score='raise')
	return scores

# 报告每个算法的平均性能,还可以创建一个箱形图和须状图来比较每个算法的精度分数分布
# define dataset
X, y = get_dataset()
# get the models to evaluate
models = get_models()
# evaluate the models and store results
results, names = list(), list()
for name, model in models.items():
	scores = evaluate_model(model, X, y)
	results.append(scores)
	names.append(name)
	print('>%s %.3f (%.3f)' % (name, mean(scores), std(scores)))
# plot model performance for comparison
pyplot.boxplot(results, labels=names, showmeans=True)
pyplot.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值