spark中 进行高维矩阵的SVD分解(1)

本文介绍了如何使用Spark进行大规模高维矩阵的Singular Value Decomposition(SVD)分解。通过实例展示了在单机和集群环境下运行1万*1万及7万*9万矩阵的性能对比,并探讨了Spark在处理大型数据集时的优势。
摘要由CSDN通过智能技术生成

最近需要做个主题模文档分类,所以牵扯到高维矩阵的分解,初步尝试 7万*9万的矩阵分解,单机是实在无法跑的动,所以选择分布式的处理,来尝试

import java.util.{Date, Locale}
import java.text.DateFormat
import java.text.DateFormat._
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.mllib.linalg._
val now1 = new Date  //打印开始读数据的时间

//开始读取hdfs的数据 eg:我这里的数据是存放在hdfs的path=“/usr/matrix/title_matrix.txt” 下,分割符是‘,’
val M = new RowMatrix(sc.textFile("hdfs:///usr/matrix/title_matrix.txt").map(_.split(','))
.map(_.map(_.toDouble))
.map(_.toArray).map(line => Vectors.dense(line)))

//对矩阵进行 svd分解  并设置输出时的时间
val svd = M.computeSVD(9, true)
val last1 = new Date

//打印输出时的时间
now1
last1

//可以查看奇异值分解的U、D、V

val U = sv

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值