【深度学习中的数学】高维矩阵乘法规则

本文详细介绍了高维矩阵(张量)相乘的两种情况:相同维度和不同维度的矩阵乘法。在相同维度下,遵循二维矩阵乘法规则,允许通过广播机制扩展形状。不同维度矩阵相乘时,较低维矩阵的最高维须与较高维矩阵对应维度匹配。实战中,可以使用numpy的matmul()函数进行操作。广播机制使得不完全匹配的维度也能进行运算,扩展了矩阵乘法的灵活性。
摘要由CSDN通过智能技术生成

⾼维矩阵指维度≥3的矩阵,或者叫张量。

高维矩阵相乘分两种情况:1.相同维度 2.不同维度

1.相同维度矩阵

本质上还是⼆维矩阵之间的乘法,即把最后两个维度看成矩阵,执⾏⼆维矩阵乘法。

要求:1)后两维满足二维矩阵乘法

2)前几维形状相同

例如(a,b,c,d)可与(a,b,d,e)相乘

但由于广播机制的存在,要求2)不满足时也可进行相乘,前几维取较大的形状

(a,b,c,d)*(e,f,d,g)=(max{a,e},max{b,f},c,g)

实战中可以使用numpy中的matmul()

2.不同维度矩阵

由于矩阵不同维度,就相当于一维向量与常数进行对位点乘,也相当于二维矩阵与一维向量相乘

要求:较低维矩阵的所有维数形状与高维相同

(a,b,c)*(b,c)或(a,b,c,d)*(b,c,d)

但是由于广播机制的存在,较低维矩阵只要求其最高维与较高维矩阵对应维度形状相同即可,要求不满足时也可进行相乘,后几维取较大形状

实际要求:较低维矩阵的最高维与较高维矩阵对应维度形状相同

(a,b,c)*(b,e)=(a,b,max{c,e})

(a,b,c,d)*(b,,e,f)=(a,b,max{c,e},max{d,f})

因为广播机制,左乘右乘不加以区分

实战中数组点乘*

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值