/*
* Copyright (c) 2014, 烟台大学计算机学院
* All rights reserved.
* 作 者:王颖
* 完成日期:2014 年 3 月 8 日
* 版 本 号:v1.0
* 输入描述: 无
* 问题描述:点结构体与枚举
* 程序输出:略
* 问题分析:略
* 算法设计:略
*/
#include <iostream>
#include<cmath>
using namespace std;
enum SymmetricStyle {axisx,axisy,point};//分别表示按x轴, y轴, 原点对称
struct Point
{
double x; // 横坐标
double y; // 纵坐标
};
int main( )
{
Point p1= {1,5},p2= {4,1},p;
double distance(Point p1, Point p2); // 两点之间的距离
double distance0(Point p1);
Point symmetricAxis(Point p,SymmetricStyle style); //返回对称点
cout<<"两点的距离为:"<<distance(p1,p2)<<endl;
cout<<"p1到原点的距离为:"<<distance0(p1)<<endl;
p=symmetricAxis(p1,axisx);
cout<<"p1关于x轴的对称点为:"<<"("<<p.x<<", "<<p.y<<")"<<endl;
p=symmetricAxis(p1,axisy);
cout<<"p1关于y轴的对称点为:"<<"("<<p.x<<", "<<p.y<<")"<<endl;
p=symmetricAxis(p1,point);
cout<<"p1关于原点的对称点为:"<<"("<<p.x<<", "<<p.y<<")"<<endl;
return 0;
}
// 求两点之间的距离
double distance(Point p1,Point p2)
{
double d;
int d1=0,d2=0,d3=0;
if(p1.x<p2.x)
{
d1=p2.x-p1.x;
}
else
{
d1=p1.x-p2.x;
}
if(p2.y<p1.y)
{
d2=p1.y-p2.y;
}
else
{
d2=p2.y-p1.y;
}
d3=d1*d1+d2*d2;
d=sqrt(d3);
return d;
}
// 求点到原点的距离
double distance0(Point p)
{
double d;
int d1=0;
d1=p.x*p.x+p.y*p.y;
d=sqrt(d1);
return d;
}
// 求对称点
Point symmetricAxis(Point p1,SymmetricStyle style)
{
switch(style)
{
case axisx:
p1.x=-p1.x;
return p1;
case axisy:
p1.y=-p1.y;
return p1;
case point:
p1.x=-p1.x;
p1.y=-p1.y;
return p1;
default:
cout<<"error\n";
}
return p1;
}
02周:项目五:点结构与枚举
最新推荐文章于 2019-09-29 17:29:04 发布