239. Sliding Window Maximum

239. Sliding Window Maximum

Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.

Window positionMax
[1 3 -1] -3 5 3 6 73
1 [3 -1 -3] 5 3 6 73
1 3 [-1 -3 5] 3 6 75
1 3 -1 [-3 5 3] 6 75
1 3 -1 -3 [5 3 6] 76
1 3 -1 -3 5 [3 6 7]7

Therefore, return the max sliding window as [3,3,5,5,6,7].

Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array’s size for non-empty array.

Follow up:
Could you solve it in linear time?

这道题是 hard 难度,要解决也是想了很久,主要还是依靠 tag 给的思路

使用 stack,基本原则就是保持 stack 的大小是 k,同时每次添加新的元素,可以将比它小的元素都去掉。保证了窗口大小内总是最大的在顶端。

然而 stack 存在的问题是只能对栈顶进行操作,当stack 尺寸大于 k 时,我们无法有效去除底部元素。对于首尾都需要操作的情况,一个有效的数据结构就是 dequeue。他保证了数据的首尾都能够有效利用。

为了保持数列信息,我们存入的是所在元素的位置而不是数值。

public class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        if(nums.length == 0 ||k == 0){
            return nums;
        }
        int index = 0;
        int[] res = new int[nums.length - k + 1];
        Deque<Integer> win = new LinkedList();
        for(int i = 0 ; i < nums.length; i++){
            while(!win.isEmpty()  && win.peek() < i - k + 1){
                win.poll();
            }

            while(!win.isEmpty()  && nums[win.peekLast()] < nums[i]){
                win.pollLast();
            }
            win.offer(i);

            if(i>=k -1){
                res[index++] = nums[win.peek()];
            }
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值