机器学习算法分类-总览

目录

一、机器学习算法类型

1. 监督学习(Supervised Learning)

2.无监督学习(Unsupervised Learning)

3.强化学习(Reinforcement Learning)

4.神经网络与深度学习(Neural Networks and Deep Learning)

5.集成学习(Ensemble Learning)

二、分类、回归、聚类、降维的区别

1.分类&回归(Classification & Regression)

2.聚类(Clustering)

3.降纬(Dimensionality Reduction)

 

一、机器学习算法类型


机器学习算法类型
机器学习算法分类

1. 监督学习(Supervised Learning)

该算法由一个目标/结果变量(或因变量)组成,该变量将从给定的一组预测变量(自变量)中预测。使用这些变量集,我们生成一个将输入映射到所需输出的函数。训练过程继续进行,直到模型在训练数据上达到所需的准确度。

  • 回归(Regression)

  • 分类(Classfication)

    • K近邻(K-NN)

    • 朴素贝叶斯(Naive Bayes)

    • 逻辑回归(Logistic Regression)

    • 支持向量机(SVM)

    • 决策树(Decision Trees)

2.无监督学习(Unsupervised Learning)

在此算法中,我们没有任何目标或结果变量来进

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值