目录
2.无监督学习(Unsupervised Learning)
3.强化学习(Reinforcement Learning)
4.神经网络与深度学习(Neural Networks and Deep Learning)
1.分类&回归(Classification & Regression)
3.降纬(Dimensionality Reduction)
一、机器学习算法类型
1. 监督学习(Supervised Learning)
该算法由一个目标/结果变量(或因变量)组成,该变量将从给定的一组预测变量(自变量)中预测。使用这些变量集,我们生成一个将输入映射到所需输出的函数。训练过程继续进行,直到模型在训练数据上达到所需的准确度。
-
回归(Regression)
-
多项式回归(Polnomial Regression)
-
岭/Lasson回归(Ridge/Lasson Regression)
-
分类(Classfication)
-
K近邻(K-NN)
-
朴素贝叶斯(Naive Bayes)
-
逻辑回归(Logistic Regression)
-
支持向量机(SVM)
-
决策树(Decision Trees)
-
2.无监督学习(Unsupervised Learning)
在此算法中,我们没有任何目标或结果变量来进