Codeforces Round #214 (Div. 2)——Dima and Salad

题目链接

  • 题意:
    一行a[i],一行b[i],a和b是一一对应的。选取任意个数对,使得sigma(a)/ sigma(b)等于k,求这时候sigma(a)的最大值
  • 分析:
    这个题目关键在于对sigma(a)/ sigma(b)== k的处理。对于这种式子,用每个数的比值显然是不行的,因为没法累加;而且是double型,没法DP
    考虑一个每个数对对这个式子的影响,如果每个数都是a = k * b,那么显然是可以的;如果a小于k * b,那么在整体中,当前数对少的数肯定要有一些数对来补偿,也就是说,记x = k * b - a,所有选择的数对的x的和应该是零。
    那么,每个数对其实就变成了一个可正可负的数,求若干个和为零的数的sigma(b)的最大值,正负分开,用背包解决即可

const int MAXN = 110;
const int M = 210000;

int tastes[MAXN], calories[MAXN];
int v[MAXN];
int dp[2][M];

int main()
{
//    freopen("in.txt", "r", stdin);
    int n, m;
    while (~RII(n, m))
    {
        REP(i, n) RI(tastes[i]);
        REP(i, n) RI(calories[i]);
        REP(i, n) v[i] = tastes[i] - calories[i] * m;
        CLR(dp, -INF);
        dp[0][0] = dp[1][0] = 0;
        REP(i, n)
        {
            int cnt = v[i] < 0, val = abs(v[i]);
            FED(j, M - val - 1, 0)
                dp[cnt][j + val] = max(dp[cnt][j + val], dp[cnt][j] + tastes[i]);
        }
        int ans = 0;
        REP(i, M)
            ans = max(ans, dp[0][i] + dp[1][i]);
        if (ans <= 0)
            puts("-1");
        else
            WI(ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值