题目链接
- 题意:
一行a[i],一行b[i],a和b是一一对应的。选取任意个数对,使得sigma(a)/ sigma(b)等于k,求这时候sigma(a)的最大值 - 分析:
这个题目关键在于对sigma(a)/ sigma(b)== k的处理。对于这种式子,用每个数的比值显然是不行的,因为没法累加;而且是double型,没法DP
考虑一个每个数对对这个式子的影响,如果每个数都是a = k * b,那么显然是可以的;如果a小于k * b,那么在整体中,当前数对少的数肯定要有一些数对来补偿,也就是说,记x = k * b - a,所有选择的数对的x的和应该是零。
那么,每个数对其实就变成了一个可正可负的数,求若干个和为零的数的sigma(b)的最大值,正负分开,用背包解决即可
const int MAXN = 110;
const int M = 210000;
int tastes[MAXN], calories[MAXN];
int v[MAXN];
int dp[2][M];
int main()
{
// freopen("in.txt", "r", stdin);
int n, m;
while (~RII(n, m))
{
REP(i, n) RI(tastes[i]);
REP(i, n) RI(calories[i]);
REP(i, n) v[i] = tastes[i] - calories[i] * m;
CLR(dp, -INF);
dp[0][0] = dp[1][0] = 0;
REP(i, n)
{
int cnt = v[i] < 0, val = abs(v[i]);
FED(j, M - val - 1, 0)
dp[cnt][j + val] = max(dp[cnt][j + val], dp[cnt][j] + tastes[i]);
}
int ans = 0;
REP(i, M)
ans = max(ans, dp[0][i] + dp[1][i]);
if (ans <= 0)
puts("-1");
else
WI(ans);
}
return 0;
}