1.递归概念
简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁
2.递归调用机制
两个小案例,来帮助大家理解递归
- 打印问题
- 阶乘问题
使用图解方式说明了递归的调用机制
// 传入 n = 4
private static void test(int n) {
if (n > 2) {
test(n - 1);
}
System.out.println("n = " + n);
}
3.递归能解决什么问题
- 各种数学问题如: 8 皇后问题 , 汉诺塔, 阶乘问题, 迷宫问题, 球和篮子的问题(google 编程大赛)
- 各种算法中也会使用到递归,比如快排,归并排序,二分查找,分治算法等.
- 将用栈解决的问题-->递归代码比较简洁
4.递归需要遵守的规则
- 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
- 方法的局部变量是独立的,不会相互影响,比如n变量
- 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.
- 递归必须向退出递归的条件逼近,否则就是无限递归,出现StackOverflowError,死龟了:)
- 当一个方法执行完毕,或者遇到return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕
5.迷宫问题
思路/约定:
- map中四面都是墙,用1表示挡板(不能走的地方)
- i,j 表示从地图的哪个位置开始找(1,1)
- 如果小球能到map[6][5] 位置,说明通路找到
- 当map[i][j] 为0,表示该点没有走过,当为1表示墙,2表示通路可以走;3表示该点已经走过,但是走不通
- 走迷宫时,需要定一个策略 下 -> 右 -> 上 -> 左。如果该点走不通,再回溯
注意:小球得到的路径,和程序员设置的找路策略有关即:找路的上下左右的顺序相关
6.八皇后问题
6.1八皇后问题介绍
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于 1848 年提出:在 8×8 格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、 同一列或同一斜线上,问有多少种摆法(92)
6.2思路分析
- 第一个皇后先放第一行第一列
- 第二个皇后放在第二行第一列、然后判断是否OK,如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适
- 继续第三个皇后,还是第一列、第二列......直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
- 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.
- 然后回头继续第一个皇后放第二列,后面继续循环执行1,2,3,4的步骤
> 说明: 理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题. arr[8] ={0 , 4, 7, 5, 2, 6, 1, 3}
对应 arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第 i+1 个皇后,放在第 i+1 行的第 val+1 列