mapreduce简介

1.Mapreduce概述

1.1定义

  • MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架

  • MapReduce核心功能是将用户编写的业务逻辑代码自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上

1.2优缺点

  • 优点
  1.  MapReduce易于编程
  2. 良好扩展性
  3. 高容错性
  4. 适合PB级以上海量数据的离线处理
  • 缺点
  1. 不擅长实时/流式计算
  2. 不擅长DAG计算

1.3核心思想

核心编程思想如下图

 

1)分布式的运算程序往往需要分成至少2个阶段。

2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行

1.4进程

一个完成的MapReduce程序在分布式运行时有三类实例进程:

1)MrAppMaster:负责整个程序的过程调度及状态协调

2)MapTask:负责map阶段整个数据处理流程

3)ReduceTask:负责Reduce阶段整个数据处理流程

1.5编程规范

Mapper阶段

  1. 用户自定义的mapper要继承框架Mapper
  2. Mapper的输入数据是KV对的形式(KV的类型可自定义)
  3. Mapper中业务逻辑写在map()方法中
  4. Mapper的输出形式是KV对的形式(KV的类型可自定义)
  5. map()方法(MapTask进程)对每一个<K,V>调用一次

Reducer阶段

  1. 用户自定义的Reducer要继承框架Reducer类
  2. Reducer的输入数据类型为Mapper的输出数据类型,也是KV
  3. Reducer的业务逻辑要写在reduce()方法中
  4. ReduceTask进程对每一组相同k的<k,v>组调用一次reduce方法

Driver阶段

  1. 相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是封装了MapReduce程序相关运行参数的job对象

1.6WordCount实战

详细见:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/wordcount

2.Hadoop序列化

2.1.What

什么是序列化&反序列化?

序列化 (Serialization)是将(内存中)对象的状态信息转换为可以存储或传输的形式的过程

反序列化就是将收到的字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象

2.2.Why      

  • 为什么序列化?

    一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“获的”对象只能由本地进程使用,不能被发送到网络上的另外一台计算机。然而 序列化 可以存储 “活的” 对象,可以将 “活的”对象发送到远程计算机

  • 为什么不用java的序列化?

    java序列化是一个重量级序列化框架,一个对象被序列化后,会带来很多额外信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable)

  • 为什么用hadoop的序列化?

    Hadoop序列化特点:

    1.紧凑:高效使用存储空间

    2.快速:读写数据的额外开销小

    3.可扩展:随着通信协议升级而可升级

    4.互操作:支持多语言交互

2.3.How

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。

具体实现bean对象序列化步骤注意以下几点

(1)必须实现Writable接口

(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

(3)重写序列化方法(write)

(4)重写反序列化方法(readFields)

(5)注意反序列化的顺序和序列化的顺序完全一致

(6)要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。

(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。详见后面排序案例。

2.4实战

详细见:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/flowcount

3.MapReduce框架原理

3.1InputFormat数据输入

3.1.1切片与MapTask并行度决定机制

1.问题引出

MapTask的并行度决定Map阶段的任务处理并发度,进而影响到整个Job的处理速度。

思考:1G的数据,启动8MapTask,可以提高集群的并发处理能力。那么1K的数据,也启动8MapTask,会提高集群性能吗?MapTask并行任务是否越多越好呢?哪些因素影响了MapTask并行度

2.MapTask并行度决定机制

数据块:Block是HDFS物理上把数据分成一块一块。

数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储

切片决定机制

1.一个job的map阶段并行度由客户端在提交job时的切片数决定

2.每一个split切片分配一个MapTask并行实例处理

3.默认情况下,切片大小=BlockSize

4.切片不考虑数据及整体,而是针对每一个文件单独切片(如有10个1k文件,会产生10个切片)

3.1.2 Job提交流程和切片源码

1.job提交流程

// drivier中
waitForCompletion()

// org.apache.hadoop.mapreduce.job  提交
submit();

// A.建立连接
connect();	
        
		// 1)创建提交Job的代理   org.apache.hadoop.mapreduce.Cluster
		new Cluster(getConfiguration());
			// (1)判断是本地yarn还是远程
			initialize(jobTrackAddr, conf); 

// B 提交job  org.apache.hadoop.mapreduce.Job
submitter.submitJobInternal(Job.this, cluster)
	// 1)创建给集群提交数据的Stag路径     org.apache.hadoop.mapreduce.JobSubmitter
    // 本人本机路径为 file:/tmp/hadoop-feifeiliu/mapred/staging/feifeiliu2081632564/.staging 每次都不一样
	Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);

	// 2)获取jobid ,并创建Job路径   本地jobId job_local2081632564_0001  每次都不一样
	JobID jobId = submitClient.getNewJobID();

	// 3)拷贝jar包到集群
copyAndConfigureFiles(job, submitJobDir);	
	rUploader.uploadFiles(job, jobSubmitDir);

// 4)计算切片,生成切片规划文件
writeSplits(job, submitJobDir);
		maps = writeNewSplits(job, jobSubmitDir);
		input.getSplits(job);

// 5)向Stag路径写XML配置文件
// 包括 core-default.xml, core-site.xml, mapred-default.xml, mapred-site.xml, yarn-default.xml, yarn-site.xml, hdfs-default.xml, hdfs-site.xml
writeConf(conf, submitJobFile);
	conf.writeXml(out);

// 6)提交Job,返回提交状态  //  submitJob 有LocalJobRunner和YarnRunner两个实现
status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials());
// 7)删除本地配置文件
jtFs.delete(submitJobDir, true);

 

2.FileInputFormat切片源码解析(input.getSplits(job))

// 分割切片计算公式
// 方法调用路径为 writeSplits(job, submitJobDir); -> writeNewSplits(job, jobSubmitDir); -> input.getSplits(job);  // org.apache.hadoop.mapreduce.lib.input.FileInputFormat 类

// minSize 值为1  :getFormatMinSplitSize() 值为固定值1,  getMinSplitSize(job) 根据配置的 "mapreduce.input.fileinputformat.split.minsize",如果没有则结果为1
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));   

// 值为 9223372036854775807  ,优先取配置的"mapreduce.input.fileinputformat.split.maxsize" ,如果没有,则取 Long.MAX_VALUE
long maxSize = getMaxSplitSize(job);

// 值为33554432  块大小本地默认为 32M, 如果是on yarn 老版本为 64M,新版本为 128M
long blockSize = file.getBlockSize();


// 值为33554432 (32m) 计算方法为 Math.max(minSize, Math.min(maxSize, blockSize));
long splitSize = computeSplitSize(blockSize, minSize, maxSize);

// 循环分割,将数据写入 List<InputSplit> splits = new ArrayList<InputSplit>()
// SPLIT_SLOP 为固定值 1.1
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
            int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
            splits.add(makeSplit(path, length-bytesRemaining, splitSize,
                        blkLocations[blkIndex].getHosts(),
                        blkLocations[blkIndex].getCachedHosts()));
            bytesRemaining -= splitSize;
          }

具体流程如下

  1. 程序先找到数据存储目录

  2. 开始遍历处理(规划切片)目录下每一个文件

  3. 遍历第一个文件file1.txt

    a)获取文件大小fs.size(file1.txt)

    b)计算切片大小 long splitSize = computeSplitSize(blockSize, minSize, maxSize);

    c)默认情况下切片大小=blockSize

    d)开始切,形成第一个切片,每次切片时都要判断剩余部分是否大于1.1倍,不大于就划分为一块切片

    e)将切片信息写入到一个切片规划文件中

    f)整个切片的核心过程在getSplit()方法中完成

    g)InputSplit只记录了切片元数据信息,比如其实位置、长度以及所在节点列表等信息

  4. 提交切片规划文件到YARN上,YARN上的MrAppMaster就可以根据切片规划文件计算开启MapTask个数

3.1.3FileInputFormat切片机制

FileInputFormat为abstract class具体继承关系如下图,正常情况下,其默认实现为TextInputFormat

3.1.4 CombineTextInputFormat切片机制

框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小都会是一个单独的切片,都会交给一个MapTask,这样如果有大量小文件,就会产生大量的MapTask,处理效率极其低下。

1、应用场景:

CombineTextInputFormat用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理。

2、虚拟存储切片最大值设置

CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m

注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。

3、切片机制

生成切片过程包括:虚拟存储过程和切片过程二部分。

(1)虚拟存储过程:

将输入目录下所有文件大小,依次和设置的setMaxInputSplitSize值比较,如果不大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值2倍,此时将文件均分成2个虚拟存储块(防止出现太小切片)。

例如setMaxInputSplitSize值为4M,输入文件大小为8.02M,则先逻辑上分成一个4M。剩余的大小为4.02M,如果按照4M逻辑划分,就会出现0.02M的小的虚拟存储文件,所以将剩余的4.02M文件切分成(2.01M和2.01M)两个文件。

(2)切片过程:

(a)判断虚拟存储的文件大小是否大于setMaxInputSplitSize值,大于等于则单独形成一个切片。

(b)如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。

c)测试举例:有4个小文件大小分别为1.7M5.1M3.4M以及6.8M这四个小文件,则虚拟存储之后形成6个文件块,大小分别为:1.7M,(2.55M2.55M),3.4M以及(3.4M3.4M)最终会形成3个切片,大小分别为:(1.7+2.55M,(2.55+3.4M,(3.4+3.4M

4、实战

详细见:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/wordcount

添加如下代码:

job.setInputFormatClass(CombineTextInputFormat.class);
CombineTextInputFormat.setMaxInputSplitSize(job,4194304); // 4M

效果:

  • 添加前:number of splits:5
  • 添加后:number of splits:1

3.1.5FileInputFormat实现类

1.TextInputFormat

TextInputFormat是默认的FileInputFormat实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量,LongWritable类型。值是这行的内容,不包含任何行终止符(换行符和回车符),Text类型

例子,输入内容:

Rich learning form

Intelligent learning engine

Learning more convenient

From the real demand for more close to the enterprise

每条记录表示为以下键值对

(0,Rich learning form)

(19,Intelligent learning engine)

(47,Learning more convenient)

(72,From the real demand for more close to the enterprise)

2.KeyValueTextInputFormat

每一行均为一条记录,被分隔符分割为key,value。可以在驱动类中 conf.set(KeyValueLineRecordReader.KEY_VALUE_SEPERATOR, '\t');类设定,默认分隔符是'\t'

实战参考:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/kvcount

3.NLineInputFormat

如果使用NLineInputFormat,代表每个map进程处理的InputSplit不在按Block块来划分,而是NLineInputFormat指定的行数N来划分。即输入文件的总行数/N=切片数,如果不整除,切片=商+1

例子,输入内容:

Rich learning form

Intelligent learning engine

Learning more convenient

From the real demand for more close to the enterprise

如果N为2,则两个task分别收到以下内容

-- task1

(0,Rich learning form)

(19,Intelligent learning engine)

-- task2

(47,Learning more convenient)

(72,From the real demand for more close to the enterprise)

实战参考:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/nlinecount

4.总结:TextInputFormat和KeyValueTextInputFormat类采用默认的切片方式,只是读入方式不一样,通过读源码也会发现此两个类只改写了 isSplitable、createRecordReader 两个方法;而

NLineInputFormat则是改写了getSplits、getRecordReader方法,但是getRecordReader方法和TextInputFormat中实现类似,都是返回new LineRecordReader

3.1.6自定义InputFormat

在企业开发中,Hadoop框架自带的InputFormat类型不能满足所有应用场景,需要自定义InputFormat来解决实际问题

自定义InputFormat步骤如下:

  1. 自定义一个类继承FileInputFormat
  2. 改写RecordReader,实现一次读取一个完成文件封装成KV

3.1.7实战

1.自定义一个类继承FileInputFormat

  • 重写isSplitable()方法,返回false不可分割
  • 重写createRecordReader(),创建自定义的RecordReader对象,并初始化

2.改写RecordReader,实现一次读取一个完整文件封装为kv

  • 采用IO流一次读取一个文件输出到value中,因为设置了不可切片,最终把所有文件都封装到value中
  • 获取文件路径信息+名称,并设置key

3.设置Driver

job.setInputFormatClass(WholeFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);

实战参考:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/defineinput

3.2MapReduce工作流程

3.2.1流程示意图

3.2.2流程详解

上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:

1MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中

2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

3)多个溢出文件会被合并成大的溢出文件

4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序

5ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据

6ReduceTask会取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)

7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

3.2.3注意点

Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

缓冲区的大小可以通过参数调整,参数:io.sort.mb默认100M

3.2.4源码解析流程


//全流程
context.write(k, NullWritable.get());
   output.write(key, value);
      collector.collect(key, value,partitioner.getPartition(key, value, partitions));
      	  HashPartitioner();
      collect()
	     close()
	        collector.flush()
              // 排序并溢写
              sortAndSpill()
	             sort()   QuickSort
              // 每个partition进行combine
              combinerRunner.combine(kvIter, combineCollector);
              // 归并
              mergeParts();
                 file.out/file.out.index
            collector.close();

//环形缓冲区
//meta write accounting info
private IntBuffer kvmeta = ByteBuffer.wrap(kvbuffer)
         .order(ByteOrder.nativeOrder())
         .asIntBuffer();
kvmeta.put(kvindex + PARTITION, partition);
kvmeta.put(kvindex + KEYSTART, keystart);
kvmeta.put(kvindex + VALSTART, valstart);
kvmeta.put(kvindex + VALLEN, distanceTo(valstart, valend));

//data
final BlockingBuffer bb = new BlockingBuffer();
private Serializer<K> keySerializer = serializationFactory.getSerializer(keyClass);
keySerializer.open(bb);
private Serializer<K> valSerializer = serializationFactory.getSerializer(valClass);
valSerializer.open(bb);
keySerializer.serialize(key);
valSerializer.serialize(value);
bb.write(b0, 0, 0);

//  map端过程 主要在MapTask类中
input.initialize(split, mapperContext);
mapper.run(mapperContext);  // 进入mapper类run方法
mapPhase.complete();        // 
setPhase(TaskStatus.Phase.SORT);
statusUpdate(umbilical);
input.close();
input = null;
output.close(mapperContext); // 关闭时进行flush

 

3.3Shuffle机制

3.3.1 Shuffle机制

3.3.2 Partition分区

1.问题引出

要求将统计结果按照条件输出到不同文件中(分区)。比如:将统计结果按照手机归属地不同省份输出到不同文件中(分区)

2.默认Partitioner分区

public class HashPartitioner<K, V> extends Partitioner<K, V> {

  /** Use {@link Object#hashCode()} to partition. */
  public int getPartition(K key, V value,
                          int numReduceTasks) {
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
  }

}

默认分区是key的hashcode对ReduceTask个数取模得到的,用户没法控制哪个key存储到哪个分区

3.自定义Partitioner步骤

  • 自定义Partitioner,重写getPartition方法

  • 在job驱动中设置自定义Partitioner

job.setPartitionerClass(xxx.class);
  • 根据自定义的Partitione逻辑设置相应数量的ReduceTask
   job.setNumReduceTasks(5);

4.分区总结

  • 如果ReduceTask数量>getPartition的结果数,则会多产出几个空文件part-r-000xx;

  • 如果1<ReduceTask数量<getPartition的结果数,则有一部分分区会无处安放,会Exception

  • 如果ReduceTask = 1,最终结果都交给这一个ReduceTask,最终结果也就只会产生一个结果文件part-r-00000;

  • 分区号必须从零开始,逐一累加

  • 如果设置的reduceTask为1,则不会走HashPartitioner,因为此时分区不用计算

  • 先取得分区,再向环形缓冲区写入数据,代码如下

// org.apache.hadoop.mapred.MapTask
// 代码如下,先取得分区,再进行collect
@Override
    public void write(K key, V value) throws IOException, InterruptedException {

      collector.collect(key, value,
                        partitioner.getPartition(key, value, partitions));
    }

5.实战

将统计结果按照手机归属地不同省份输出到不同文件中(分区)

实战参考:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/flowcount

3.3.3 WritableComparable排序

1.概述

排序是MapReduce框架中最重要的操作之一。

MapTask和ReduceTask均会对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要

默认排序是按照字典顺序排序,且实现该排序的方法是快速排序

  • 对于MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对缓冲区中数据进行一次排序,并将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序。
  • 对于ReduceTask,它从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写到磁盘上,否则存储在内存中。如果磁盘上文件数据达到一定阈值,则进行一次归并排序以生成一个更大的文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序

2.排序分类

  1. 部分排序

    MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序

  2. 全排序

    最终输出结果只有一个文件,且文件内部有序。实现方式是值设置一个ReduceTask。但该方法在处理大型文件时效率极低,因为一台机器所处理所有文件,完全丧失了mr所提供的并行架构

  3. 辅助排序

    在reduce端对key进行分组。应用于:在接收的key为bean时,想让一个或几个字段相同(全部字段表不相同)的key进入到同一个reduce方法时,可以采用分组排序

  4. 二次排序

    在自定义排序过程中,如果compareTo中判断条件为两个即为二次排序

3.自定义排序

bean对象做为key传输,需要实现WritableComparable接口重写compareTo方法,就可以实现排序,如

    @Override
    public int compareTo(FlowBeanSort other) {
        return - Long.compare(this.sumFlow,other.sumFlow);
    }

4.实战

实战参考:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/sort

Driver中增加如下代码即为区内排序,不添加则为全排序

job.setPartitionerClass(ProvinceSortPartitioner.class);
job.setNumReduceTasks(5);

3.3.4Combiner合并

1.概述

  1. Combiner是MR程序中Mapper和Reducer之外的一种组件
  2. Combiner组件的父类就是Reducer
  3. Combiner和Reducer的区别在于运行的位置
    Combiner是在每一个MapTask所在的节点运行
    Reducer是接收全局所有Mapper的输出结果
  4. Combiner的意义就是对每一个MapTask的输出进行局部汇总,以减小网络传输量
  5. Combiner能够应用的前提是不能影响最终业务逻辑,而且,Combiner的输出kv应该和Reducer的输入kv类型要对应起来

2.自定义Combiner实现步骤

  • 自定义一个Combiner继承Reducer,重写Reduce方法
  • Job驱动类中设置    
job.setCombinerClass(WordcountCombiner.class);

3.实战

实战链接:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/wordcount

在代码中添加如下语句即可

job.setCombinerClass(WordCountReducer.class);

假设输入数据为  hello mapreduce hello

// 未设置Combiner时map端排序后输入如下:

<hello,<1,1>>

<mapreduce,1>

// 设置Combiner后map端排序后输入如下:

<hello,2>

<mapreduce,1>

设置Combiner前输出为:

        Map input records=1
        Map output records=3
        Map output bytes=46
        Map output materialized bytes=58
        Input split bytes=191
        Combine input records=0
        Combine output records=0
        Reduce input groups=2
        Reduce shuffle bytes=58
        Reduce input records=3

        Reduce output records=2

设置Combiner后输出为:

        Map input records=1
        Map output records=3
        Combine input records=3
        Combine output records=2
        Reduce input groups=2
        Reduce shuffle bytes=42
        Reduce input records=2  
 
        Reduce output records=2

3.3.5GroupingComparator分组(辅助排序)

1.步骤:对Reduce阶段的数据根据某一个或几个字段进行分组。

分组排序步骤:

(1)自定义类继承WritableComparator

(2)重写compare()方法

2.实战

实战参考:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/orderprice

3.源码&原理

// 当 context.nextKey() 返回true 时进入 reduce
while (context.nextKey()) {
        reduce(context.getCurrentKey(), context.getValues(), context);
        // If a back up store is used, reset it
        Iterator<VALUEIN> iter = context.getValues().iterator();
        if(iter instanceof ReduceContext.ValueIterator) {
          ((ReduceContext.ValueIterator<VALUEIN>)iter).resetBackupStore();        
        }
      }


// 如果 有下一个值 且下一个值 的key和当前一样,则进入 nextKeyValue() 方法
public boolean nextKey() throws IOException,InterruptedException {
    // 如果下一个值和当前值一样,则一直会有此循环。直到下一个值和当前值不一样
    while (hasMore && nextKeyIsSame) {
      nextKeyValue();
    }
    if (hasMore) {
      if (inputKeyCounter != null) {
        inputKeyCounter.increment(1);
      }
      return nextKeyValue();
    } else {
      return false;
    }
  }


// nextKeyValue 方法中
if (hasMore) {
      nextKey = input.getKey();
      // 此处的 compare 即调用自定的 OrderGroupingComparator 方法
      nextKeyIsSame = comparator.compare(currentRawKey.getBytes(), 0, 
                                     currentRawKey.getLength(),
                                     nextKey.getData(),
                                     nextKey.getPosition(),
                                     nextKey.getLength() - nextKey.getPosition()
                                         ) == 0;
    }

如果没用定义辅助排序,则ReduceTask不同的key会不同时间进入reduce进行处理。定义辅助排序后,可以将不同的key“伪装”成相同的key同时进入reduce进行计算

3.4MapTask工作机制

  1. Read阶段:MapTask通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。

  2. Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。

  3. Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。

  4. Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

    溢写阶段详情:

    • 步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。

    • 步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。

    • 步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。

  5. Combine阶段(merge文件):当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。当所有数据处理完后,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。 在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。 让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。

3.5ReduceTask

3.5.1ReduceTask工作机制

(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。

(2)Merge阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。

(3)Sort阶段:按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。

(4)Reduce阶段:reduce()函数将计算结果写到HDFS上。

3.5.2.设置ReduceTask并行度(个数)

ReduceTask的并行度同样影响整个Job的执行并发度和执行效率,但与MapTask的并发数由切片数决定不同,ReduceTask数量的决定是可以直接手动设置:

// 默认值是1,手动设置为4

job.setNumReduceTasks(4);

3.5.3 实验:测试ReduceTask多少合适

(1)实验环境:1个Master节点,16个Slave节点:CPU:8GHZ,内存: 2G

(2)实验结论:以下当task数为16时效率最高

改变ReduceTask (数据量为1GB)

MapTask =16

ReduceTask

1

5

10

15

16

20

25

30

45

60

总时间(s)

892

146

110

92

88

100

128

101

145

104

3.5.4注意事项

  • ReduceTask=0,表示没有Reduce阶段,输出文件个数和Map数一样

  • ReduceTask默认是1,所以输出文件个数为1

  • 如果数据分布不均匀,就可能在Reduce阶段产生数据倾斜

  • ReduceTask数量并不是任意设置,还要考虑业务逻辑,有些情况下,需要算全局总数,就只能有一个ReduceTask

  • 具体多少个ReduceTask,需要根据集群性能而定

  • 如果分区数不是1,但是reduce为1,是否执行分区过程。答案是:不执行分区过程,因为在MapTask源码里面,执行分区的前提是先判断ReduceNum个数是否大于1

3.6OutPutFormat数据输出

3.6.1接口实现类

OutputFormat是MapReduce输出的基类,所有实现MapReduce输出都实现了OutPutFormat接口,下面介绍几种常见的OutPutFormat实现类

  • 文本输出TextOutputFormat

    默认的输出格式是TextOutPutFormat,它把每条记录写成文本。它的键和值可以是任意类型,因为TextOutputFormat调用toString方法把它们转换为字符串

  • SequenceFileOutputFormat

    将SequenceFileOutputFormat输出作为后续MapReduce任务的输入,这便是一种好的输出格式,因为它的格式紧凑

  • 自定义OutPutFormat

    根据用户需求,自定义输出

    1. 使用场景

      为了实现控制最终输出文件的输出路径和输出格式,可以自定义OutPutFormat

    2. 自定义OutputFormat步骤

      a)自定义一个类继承FileOutputFormat

      b)改写RecordWriter,具体改写输出数据的方法write()

3.6.2实战

实战参考: https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/filterlog

3.7Join多中应用

3.7.1Reduce Join

1.工作原理

Map端主要工作:对来自不同表或文件的key/value对,打标以区别不同来源的记录。然后用连接字段作为key,其余部分和新加的标志作为value,最后输出

Reduce端主要工作:在Reduce端以连接字段作为key分组已完成,我们只需要在每一个组中将那些来源不同的记录(Map阶段已打标)分开,最后进行合并就ok了

2.实战

实战参考:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/join/reducesideJoin

3.7.2Map Join

1.使用场景

Map Join适用于一张表十分小、一张表很大的场景

2.优点

思考:在Reduce端处理过多的表,非常容易产生数据倾斜。怎么办?

Map端缓存多张表,提前处理业务逻辑,这样增加Map端业务,减少Reduce端数据的压力,尽可能的减少数据倾斜。

3.具体办法:采用DistributedCache

       1)在Mappersetup阶段,将文件读取到缓存集合中。

       2)在驱动函数中加载缓存。

// 缓存普通文件到Task运行节点。

job.addCacheFile(new URI("xxx));

4.实战

实战参考:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/join/mapsidejoin

3.8计数器应用

hadoop为每个作业维护若干个内置计数器,以描述多项指标。例如,某些计数器记录已处理的字节数和记录数,使用户可监控已处理的输入数量和已产生的输出数量

3.8.1计数API

  • 采用枚举的方式统计计数

    enum MyCounter {DIRTY,NORMAL}

    context.getCounter(MyCounter.DIRTY).increment(1);

  • 采用计数器组、计数器名称的方式统计

    context.getCounter("counteGroup","counter").increment(1);

    组名和计数器名称随便起,但最好有意义

  • 计数结果在程序运行后的控制台上查看

job.waitForCompletion(true) // 此处设置为true在控制台打印,否则不打印

3.8.2实战

实战参考:https://github.com/TreasureGitHub/study/tree/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/clearlog

控制台输出如下:

    GC time elapsed (ms)=0
        Total committed heap usage (bytes)=257425408
    map
        false=2
        true=12
    File Input Format Counters 

4.Hadoop数据压缩

4.1概述

4.1.1压缩概述

压缩技术能够有效减少底层存储系统(HDFS)读写字节数。压缩提高了网络宽带和磁盘空间的效率。在运行MR程序时,IO操作、网络数据传输、Shuffle和Merge要花大量的时间,尤其是数据规模很大和工作负载密集的情况下,因此,使用数据压缩显得非常重要

鉴于磁盘IO和网络带宽是Hadoop的宝贵资源,数据压缩对于节省资源、最小化磁盘IO和网络传输非常有帮助。可以在任意mapreduce阶段启用压缩。不过,尽管压缩于解压操作的CPU开销不高,其性能的提升和资源的节省并非没有代价

4.1.2压缩策略和原则

压缩是提高Hadoop运行效率的一种优化策略

通过对Mapper、Reducer运行过程的数据进行压缩,以减少磁盘IO,提高MR程序运行速度

注意:采用压缩技术减少磁盘IO,但同时增加了CPU运算负担。所以,压缩特性运用得当能提高性能,但运用不得当也可能降低性能

压缩基本原则:

  • 运算密集型的job少用压缩

  • IO密集型的job,多用压缩

4.2MR支持的压缩编码

压缩格式

hadoop自带

算法

文件扩展名

是否可切分

换成压缩格式后,原来的程序是否需要修改

DEFLATE

是,直接使用

DEFLATE

.deflate

和文本处理一样,不需要修改

Gzip

是,直接使用

DEFLATE

.gz

和文本处理一样,不需要修改

bzip2

是,直接使用

bzip2

.bz2

和文本处理一样,不需要修改

LZO

否,需要安装

LZO

.lzo

需要建索引,还需要指定输入格式

Snappy

否,需要安装

Snappy

.snappy

和文本处理一样,不需要修改

为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示。

压缩格式

对应的编码/解码器

DEFLATE

org.apache.hadoop.io.compress.DefaultCodec

gzip

org.apache.hadoop.io.compress.GzipCodec

bzip2

org.apache.hadoop.io.compress.BZip2Codec

LZO

com.hadoop.compression.lzo.LzopCodec

Snappy

org.apache.hadoop.io.compress.SnappyCodec

压缩性能的比较

压缩算法

原始文件大小

压缩文件大小

压缩速度

解压速度

gzip

8.3GB

1.8GB

17.5MB/s

58MB/s

bzip2

8.3GB

1.1GB

2.4MB/s

9.5MB/s

LZO

8.3GB

2.9GB

49.3MB/s

74.6MB/s

http://google.github.io/snappy/

On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.

4.3压缩方式选择

4.3.1Gzip压缩

  • 优点:压缩率比较高,而且压缩/解压速度比较快;Hadoop本身支持,在应用中处理Gzip格式的文件就和直接处理文本文件一样;大部分Linux系统都自带Gzip命令,使用方便

  • 缺点:不支持Split

  • 应用场景:当每个文件压缩后在130M以内的(一个块大小内),都可以考虑Gzip压缩。例如说一天或者一个小时的日志压缩成一个Gzip

4.3.2Bzip2压缩

  • 优点:支持Split,具有很高的压缩率,比Gzip压缩率都高Hadoop本身自带,使用方便

  • 缺点:压缩/解压速度慢

  • 应用场景:适合对速度要求不高,但需要较高的压缩率的时候;或者输出之后数据比较大,处理之后的数据需要压缩存档减少磁盘空间并且以后数据用得比较少的情况;或者对单个很大的文件想压缩减少存储空间,同时又需要支持split,而且兼容之前的应用程序的情况  -- 比如历史数据需要归档

4.3.3Lzo压缩

  • 优点:压缩/解压速度也比较快,合理的压缩率;支持Split,是Hadoop中最流行的压缩格式;可以在Linux系统下安装lzop命令,使用方便

  • 缺点:压缩率比Gzip要低一些;Hadoop本身不支持,需要安装;在应用中对Lzo格式的文件需要做一些特殊处理(为了支持Split需要建索引,还需要指定InputFormat为Lzo格式)。

  • 应用场景:一个很大的文本文件,压缩之后还大于200M以上的可以考虑,而且单个文件越大,Lzo优点越明显

4.3.4Snappy压缩

  • 优点:高速压缩速度和合理的压缩率

  • 缺点:不支持Split;压缩率比Gzip要低;Hadoop本身不支持,需要安装

  • 应用场景:当MapReduce作业的Map输出的数据比较大的时候,作为Map到Reduce的中间数据的压缩格式;或者作为一个MapReduce作业输出和另一个MapReduce作业的输入

4.4压缩位置选择

4.5 压缩参数配置

要在Hadoop中启用压缩,可以配置如下参数:

参数

默认值

阶段

建议

io.compression.codecs  

(在core-site.xml中配置)

org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec

输入压缩

Hadoop使用文件扩展名判断是否支持某种编解码器

mapreduce.map.output.compress(在mapred-site.xml中配置)

false

mapper输出

这个参数设为true启用压缩

mapreduce.map.output.compress.codec(在mapred-site.xml中配置)

org.apache.hadoop.io.compress.DefaultCodec

mapper输出

企业多使用LZOSnappy编解码器在此阶段压缩数据

mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置)

false

reducer输出

这个参数设为true启用压缩

mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置)

org.apache.hadoop.io.compress. DefaultCodec

reducer输出

使用标准工具或者编解码器,如gzipbzip2

mapreduce.output.fileoutputformat.compress.type(在mapred-site.xml中配置)

RECORD  -- 行压缩

reducer输出

SequenceFile输出使用的压缩类型:NONEBLOCK

4.6压缩实操案例

4.6.1数据流的压缩和解压缩

CompressionCodec有两个方法可以用于轻松地压缩或解压缩数据

  • 要想对正在读写入一个输出流的数据进行压缩,我们可以使用createOutputStream(OutputStream out)方法创建一个CompressionOutputStream,将其以压缩格式写入底层的流

  • 相反,要想对从输入流读取而来的数据进行解压缩,则调用createInputStream(InputStream in),从而获得一个CompressionInputStream,从而从底层的流读取未压缩的数据

4.6.2实战

实战参考:https://github.com/TreasureGitHub/study/blob/master/study-hadoop/src/main/java/com/ffl/study/hadoop/mapreduce/mr/compress/TestCompress.java

5.MapReduce优化

5.1跑得慢的原因

MapReduce程序效率的瓶颈在于两点

1.计算机性能

CPU、内存、磁盘健康、网络

2.I/O操作优化

  • 数据倾斜

  • Map和Reduce数设置不合理

  • Map运行时间太长,导致Reduce等待太久

  • 小文件过多

  • 大量不可分块的超大文件

  • spill次数过多

  • merge次数过多

5.2优化方法

MapReduce优化方法主要从六个方面考虑:数据输入、Map阶段、Reduce阶段、IO传输、数据倾斜问题和常用的调优参数。

5.2.1 数据输入

  • 合并小文件:在执行MR任务前将小文件合并,大量的小文件会产生大量的Map任务,增大Map任务装载次数,而任务的装载比较耗时,从而导致MR任务运行慢
  • 采用CombineTextInputFormat来作为输入,解决输入端大量小文件场景

5.2.2 Map阶段

  • 减少溢写(spill)次数:通过调整io.sort.mb及sort.spill.percent参数值,增大触发spill的内存上限,减少splill次数,从而减少磁盘IO
  • 减少合并(merge)次数:通过调整io.sort.factor参数,增大merge的文件数目,减少merge次数,从而缩短mr处理时间
  • 在Map之后,不影响业务逻辑前提下,先进行combine处理,减少io

5.2.3 Reduce阶段

  • 合理设置Map和Reduce数:两个都不能设置太少,也不能设置太多。太少会导致Task等待,延长时间;太多,会导致map、reduce任务间竞争资源,造成处理超时等错误
  • 设置map、reduce共存:调整slowstart.completedmaps参数,使map运行到一定程度后,reduce也开始运行,减少reduce的等待时间
  • 规避使用reduce,因为reduce在用于连接数据集的时候会产生大量的网络消耗
  • 合理设置reduce端的buffer:默认情况下,数据达到一个阈值的时候,buffer中的数据就会写入磁盘,然后reduce会从磁盘中获得所有的数据。也就是说,buffer和reduce是没有直接关联的,中间多次写磁盘->读磁盘的过程,既然有这个弊端,那么就可以通过参数来设置,使得buffer中的一部分数据可以直接输送到reduce端,从而减少io开销:mapreduce.reduce.input.buffer.percent,默认为0.0.当值大于0的时候,会保留指定比例的内存读buffer中的数据直接拿给reduce来使用。这样一来,设置buffer需要内存,读取数据需要内存,reduce计算也要内存,所以要根据作业的运行情况来调整

5.2.4 IO传输

  • 采用数据压缩的方式,减少网络IO的时间,安装snappy和lzo压缩编码器
  • 使用sequence二进制文件

5.2.5 数据倾斜问题

1.数据倾斜现象

  • 数据频率倾斜:某一个区域的数据量要远远小于其他区域

  • 数据大小倾斜:部分记录的大小远远大于平均值

2.减少数据倾斜的方法

  • 抽样和范围范围分区

    可以通过对原始数据进行抽样得到的结果集来预设分区边界值

  • 自定义分区

    基于输出键的背景知识进行自定义分区。例如,如果map输出键的单词来源于一本书。且其中某几个专业词汇比较多。那么就可以自定义分区将这些词汇发送给固定的一部分reduce实例。而将其他的都发送给剩余的reduce实例

  • combine

    使用combine可以大量地减小数据倾斜。在可能的情况下,combine的目的就是聚合并精简数据

  • 采用map join,尽量避免reduce

5.2.6 常用的调优参数

1.资源相关参数

(1)以下参数是在用户自己的MR应用程序中配置就可以生效(mapred-default.xml)

配置参数

参数说明

mapreduce.map.memory.mb

一个MapTask可使用的资源上限(单位:MB),默认为1024。如果MapTask实际使用的资源量超过该值,则会被强制杀死。

mapreduce.reduce.memory.mb

一个ReduceTask可使用的资源上限(单位:MB),默认为1024。如果ReduceTask实际使用的资源量超过该值,则会被强制杀死。

mapreduce.map.cpu.vcores

每个MapTask可使用的最多cpu core数目,默认值: 1

mapreduce.reduce.cpu.vcores

每个ReduceTask可使用的最多cpu core数目,默认值: 1

mapreduce.reduce.shuffle.parallelcopies

每个Reduce去Map中取数据的并行数。默认值是5

mapreduce.reduce.shuffle.merge.percent

Buffer中的数据达到多少比例开始写入磁盘。默认值0.66

mapreduce.reduce.shuffle.input.buffer.percent

Buffer大小占Reduce可用内存的比例。默认值0.7

mapreduce.reduce.input.buffer.percent

指定多少比例的内存用来存放Buffer中的数据,默认值是0.0

(2)应该在YARN启动之前就配置在服务器的配置文件中才能生效(yarn-default.xml)

配置参数

参数说明

yarn.scheduler.minimum-allocation-mb       

给应用程序Container分配的最小内存,默认值:1024

yarn.scheduler.maximum-allocation-mb      

给应用程序Container分配的最大内存,默认值:8192

yarn.scheduler.minimum-allocation-vcores         

每个Container申请的最小CPU核数,默认值:1

yarn.scheduler.maximum-allocation-vcores        

每个Container申请的最大CPU核数,默认值:32

yarn.nodemanager.resource.memory-mb  

给Containers分配的最大物理内存,默认值:8192

(3)Shuffle性能优化的关键参数,应在YARN启动之前就配置好(mapred-default.xml)

配置参数

参数说明

mapreduce.task.io.sort.mb  

Shuffle的环形缓冲区大小,默认100m

mapreduce.map.sort.spill.percent  

环形缓冲区溢出的阈值,默认80%

2.容错相关参数(MapReduce性能优化)

配置参数

参数说明

mapreduce.map.maxattempts

每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

mapreduce.reduce.maxattempts

每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

mapreduce.task.timeout

Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个Task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该Task处于Block状态,可能是卡住了,也许永远会卡住,为了防止因为用户程序永远Block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是600000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。

5.3 HDFS小文件优化方法

小文件的优化无非以下几种方式:

1.数据采集的时候,就将小文件或小批数据合并成大文件再上传hdfs

2.在业务处理前,在hdfs上使用MapReduce程序对小文件进行合并

3.在mapreduce处理时,可以采用ComblineTextInputFormat提高效率

HDFS小文件解决方案:

  • Hadoop Archive

是一个高效地将小文件放入hdfs块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样就减少NameNode的内存使用

  • Sequence File

Sequence File由一系列二进制key/value组成,如果key为文件名,value为文件内容,则可以将大批小文件合并成一个大文件

  • CombineFileInputFormat

combineFileInputFormat是一种新的InputFormat,用于将多个文件合并成一个单独的split,另外,它会考虑数据的存储位置

  • 开启JVM重用

对于大量小文件job,可以开启JVM重用会减少45%运行时间

jvm重用原理:一个map运行在一个jvm上,开启重用的话,该map在jvm上运行完毕后,jvm继续运行其他map

具体设置:mapreduce.job.jvm.numtasks在10-20之间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值