判断完全平方数与不使用Sqrt函数求开方

1、完全平方数的尾数为0,1,4,5,6,9
2.由于1+3+5+…+(2n-1) = (2n-1+1)*n/2 = n^2依据该公式可以得出完全平方式的求解过程:

 public boolean isPerfectSquare(int num) {
        int left = num%10;
        if(!(left==0||left==1||left==4||left==5||left==6||left==9)){
            return false;
        }
        for(int i = 1; num > 0; i=i+2){
            num = num - i;
        }
        if(num==0)
            return true;
        return false;    
    }

3.说到这里,顺便讲讲数值分析课中学到的牛顿迭代法求开方
牛顿迭代法:
这里写图片描述
求x^2 = n ,求n;
f(x)= x^2 - n
f(x) = 0 即为解。
f(x)的导数为2*x。然后x0 = num /2.0,一只迭代,直到f(xn)趋近于0.

public static double GetSqrt(int num) {
        double x = num/2.0;
        while( (x*x-num) > 0.000001){
            x = x - (x*x - num)*1.0/(2.0*x);
        }
        return x;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值