Logistic回归算法讲解

       回归:假设有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归。

       Logistic回归进行分类是根据现有数据对分类边界线建立回归公式(找最佳拟合),以此进行分类。这里的回归表示要找到最佳拟合参数集,多元函数的参数集合,非线性回归。

       Logistic回归训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。不同于之前的分类算法为寻找最优只是调整参数大小,这里用到了寻找最优的算法。

知识回顾

1.导数是针对一元函数求导,几何意义是(在某点的)切线斜率。

2.偏导数是针对多元函数,求沿某一个坐标轴正方向(一元方向)的变化率。

3.梯度也是针对多元函数,是所有方向上的偏导数组成的向量,其几何意义是在曲面上的某一点增加(减少)最快的方向,可沿该方向(不断更新)求函数的最大值(最小值)。

4.方向导数与梯度不同,是沿着某个方向(多元方向)的变化率。

(一)基于Logistic回归和Sigmoid

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值