回归:假设有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归。
Logistic回归进行分类是根据现有数据对分类边界线建立回归公式(找最佳拟合),以此进行分类。这里的回归表示要找到最佳拟合参数集,多元函数的参数集合,非线性回归。
Logistic回归训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。不同于之前的分类算法为寻找最优只是调整参数大小,这里用到了寻找最优的算法。
知识回顾:
1.导数是针对一元函数求导,几何意义是(在某点的)切线斜率。
2.偏导数是针对多元函数,求沿某一个坐标轴正方向(一元方向)的变化率。
3.梯度也是针对多元函数,是所有方向上的偏导数组成的向量,其几何意义是在曲面上的某一点增加(减少)最快的方向,可沿该方向(不断更新)求函数的最大值(最小值)。
4.方向导数与梯度不同,是沿着某个方向(多元方向)的变化率。
(一)基于Logistic回归和Sigmoid函