论数学中的无穷

本文系转载,来源:http://blog.sina.com.cn/s/blog_569a394b0100hljk.html
论数学中的无穷
吕陈君

希尔伯特说过,数学是关于无穷的交响乐,因为无穷,数学才会显得如此自相矛盾而又奥微精深。数学需要各种各样的无穷集合,自然数集、实数集、复数集等等,怎样看待这些无穷集合的存在性,就成为数学基础问题的关键,其最基本、最关键的问题就是如何看待自然数集和实数集的关系,自从古希腊人发现“不可公比”关系以来,这个问题就一直困扰着人类的理智认识,数学史上的三次危机其实都是这一问题的不同表现形式。下面我从三个方面来谈谈数学中的无穷问题。

1.“实无穷”和“潜无穷”之争

从根本上说,人们对无穷问题的分歧,是“实无穷”和“潜无穷”两种无穷观念的分歧。“实无穷”是指,承认各种无穷集合的总体是存在的,像自然数集和实数集等等集合总体都是真实存在的;“潜无穷”是指,各种无穷集合都不是一个完成的总体,而只是一个无限递次的过程。这两种不同的无穷观会对人们理解无穷集合的性质产生许多微妙而复杂的联想,譬如,A和B是两个不同的无穷集合,依“实无穷”论者来看,由于A和B的总体确实存在,若A>B,那么A和B之间就不可能存在一一对应关系;但依“潜无穷”论者来看,由于A和B都只是一个无限递次的过程,若A>B,那么A和B之间也可以有一一对应关系。一一对应是无穷集合之间的基本关系,是不同无穷集合建立顺序关系的基本方法,但在不同无穷观的透视下,却产生了“歧义”。我认为产生“歧义”在数学中是正常的,三角形三内角和从不同观点来看还不相等了,这没有什么奇怪的。数学中没有绝对的对与错,只有谁更有合理性、解释力和更优美。数学本身是个充满矛盾的生命体,不是简单的“证伪”就可以否定的,任何一个数学证明或理论,只要放在逻辑的显微镜下,都可以找到矛盾的细胞,完全正确的数学证明是不存在的。我强调这点的用意在于:网上许多反对康托理论的所谓证明,都只是与康托看无穷集合的“视角”不同而已,很多人其实并没有完全弄懂康托理论,其证明(依我看)也有许多模糊、矛盾和错误之处。认识无穷,我们必须要谦虚一点,首先要弄懂经典理论的涵义。

2.康托理论及其不足

康托理论是“实无穷”的经典理论,在康托之前,“实无穷”是不被数学界承认的,但在康托之后,“实无穷”成为数学中的主流观点。因为“实无穷”比“潜无穷”有个最大优点,那就是它处理数学基础问题时更加方便。

康托理论的成功在于,它建立了一个无穷递次的超穷序数模型,为整个数学提供了一个简洁的抽象的基础理论。康托的出发点也很简单,他认为任何一个无穷递次的数列之后都存在一个“极限数”,像自然数列1,2,…,n,……之后必有一个“超穷数”ω。我第一次明白ω这个符号的涵义时,非常激动,从来没想到过思维会如此自由地创造出一个“数”来。根据这个原理,就可以创造出越来越大的“超穷数”。

康托理论的优点是简洁优美,但不足是基数的概念不够清楚。康托证明,自然数集和有理数集、代数数集都是一一对应的,因此这些集合的基数都相等;自然数集和实数集不能一一对应,因此自然数集比实数集的基数要小。网上反对康托的人却认为,康托对角线证明不对,自然数集和实数集也可以一一对应,因此基数这个概念没有意义。我认为,这种观点值得认真思考,因为康托利用一一对应关系来比较基数大小的方法确实有问题。从直观上看,所有良序集都是一一对应的,因为它们都是以“自然数列”为原型构造出来的,就像DNA分子不断自我复制构造出复杂结构一样;但一些集合要比另一些集合(基数)更“大”这种观点,恐怕也是成立的,譬如一个集合“蕴涵”另一个集合,当然就会更“大”一些。但这里有两个问题需要特别注意:实数集(连续统)是不是一个良序集还有待证明;实数集比自然数集“大”是应该肯定的。

康托理论的“失误”在于,他没有区分一个无穷集合的逻辑层次,这也是后来罗素提出“类型论”的缘由。打一个通俗的比喻来说,n个氢分子和n个氘分子是一一对应的,从分子的层次看,它们的“基数”相等,但从原子的层次看,它们的“基数”不相等。同样的道理,“数”也是分层次的,但所有的“数”都是由层次最低的“原子数”逐渐构造出来的。所以,比较两个无穷集合的基数大小,必须要把它们的元素规约到同一层次的“构成元素”才行。我们确实需要建立一种新的无穷观,而且不同的无穷观可能会产生不同的集合论,像不同的几何公理产生不同的几何学一样。

3.无穷集合到底是什么?

譬如,在数学上,我们讲一个无穷集合S存在,这句话到底是什么意思?S真的存在吗?这就涉及到了哲学问题。

我最早是学哲学的,特别是认知论和知识论,专业地讲,这个哲学领域包括分析哲学、语言哲学、数理哲学、科学哲学、归纳逻辑和概率论等许多分支,但其核心问题是“归纳问题”,从根上说,就是如何认识数学理论与真实世界之间的关系。

一种简单的解释是,人们理性认识外在世界经历了两次抽象过程。第一次抽象是逻辑的抽象,也就是对外在世界诸现象形成“类”的概念,即把诸现象甄别区分为不同的“类型”或“类别”,“类”是逻辑的基础;第二次抽象是数学的抽象,也就是在“类”的基础上再形成“数”的概念,因此罗素把“数”定义为“类的类”,数学的本质就是类的演算。“类”和“数”都是虚构的,所以逻辑和数学描述的只是真实世界的模型,是人类思维中的“世界图像”,而不是真实的世界。

我提出了一个假设:一个全称命题“任一x,Fx”都等价于一个无穷命题“任一x∈ωn ,Fx”,其中x表示个体,ωn 表示一个无穷域(相当于一个超穷数),F表示一个“类”(谓词)。因此,当我们讲到一个无穷集合F存在时,其实是说,世界上存在某个“类”,其取值范围(论域)大小为ωn 。显然,一个“类”可以蕴涵另一个“类”,即比它更大,其论域大小自然也是逐渐增大的。在数学上,我们认为各种无穷集合都是存在的,但这种存在性都必须找到其相应的逻辑结构才行。

我的深入研究表明,集合论可以为概率归纳逻辑提供一种合理的解释模型,这种方法又可以用来合理地解决“归纳问题”,更加深入的研究人类的思维、认知和知识之谜。利用这种方法,可以较合理地解决像“亨佩尔悖论”、“绿蓝悖论”等逻辑困难,还可以较好地解释非帕斯卡概率的逻辑模型,这种概率有个独特的性质,即如果一个命题A的非帕斯卡概率a<1,那么其否定命题﹁A的非帕斯卡概率等于0而不是等于1-a。我研究连续统假设近十年,其实最初的想法是想研究概率归纳逻辑,但我发现,集合论可以为我的认知论哲学提供一个纯粹的、抽象的理论基础。

所以,我认为,数学是研究专门问题的,只有研究某个专门问题,数学才有生命力。像“推翻××理论”、“××理论的终结”等等这样的标题,是新闻稿的写法,不是学术论文的写法,我真心希望大家讨论学术问题时不要用这样引人注目的标题,多谈具体问题,少谈哲学。

4.我和一位网友的讨论

下面是我回答一位网友对我6个证明大纲的提问,我认为他提得很有意思,摘录如下:

“我觉得真实的连续统假设可能像您说的那样是否定的,但又可能是我们制定的规则本身它没有完全反映出真实的规律,我不知道在数学上的定义是不是真理,或者某一天数学的定义会发生一种全新的变化,正如我们发现自己身处的宇宙正在膨胀而非静止一样。在以前,数学的思维方法产生对科学有影响的观点,反过来,科学的观点能否对数学的思维方法产生影响呢?世界是奇妙的,不必感叹于我们身处的世界如何奇妙,可能我们只能生存在这样的世界中。不过我的直觉告诉我实数问题是有可能解决的,因为它毕竟是实在的东西……我期待连续统假设有一个真正真实的解答。

“先假设π在数轴上且不以点的形式存在,那么它就可能正在表征一种除点以外直线的构成单元,它所占的位置可能比点还要小,因为它如果位于一个精确到无穷小的区域里,而这个区域又小得容不下一个点,那它只能是一个比点还小的单元。这里有一个很有趣的现象,我们在数轴上以原点为中心标示出单位为1和—1的点,想象数轴象麻线一样可以改变形状,那我们以1和—1为端点,把这两点中间的数轴向上隆起来形成一个以原点为圆心,单位1为半径的半圆,这有点象以圆的形式把原来1和—1之间的直线段拉长了,假设我们本身位于数轴上而且并不知道这种拉长行为,那我们在原来数轴上位于—1的点上将以弯曲的眼光看到一个数值为π的精确的点,它位于原来数轴上等于1的那个点。这有点像把原来直线数轴上的那个比点还小的表征π的单元拉长了,长到它能够以一个点的形式给我们看到。这种现象就像波粒二象性,那个比点还小的单元就像一种波,我不知道在数学上存不存在这种像物质深层次的现象,如果它存在,它存在的意义又是什么,它以多少种方式存在。

“如果上面的答案是否定的,我认为情况就完全改变了,在高等数学中,如果一个点向某个固定的点趋近并以后者为极限,那么在这两点无限接近时这两点间的距离就为无穷小量,它是变量,根据高数中对连续的描述,这两点间不可能再插入第三个点,那么,就有两种情况,第一种,这两点间的距离小到里面容不下任何东西,也就是说它是空的;第二种,这两点间的距离小到里面容不下一个点,但是还有其它东西在里面,这种情况有点像圆周率π,π用作图的方法无法在数轴上以一个精确的点的形式表示出来,这里也有两种情况,第一,π不在数轴上,但这样是很奇怪的,因为我们可以在数轴上将π所在的区域确定,而这个区域又是连续的,那么只要π是一个有大小的数,它就必定存在于数轴的某个地方;第二,π不是以点的形式存在于数轴上,如果真是这样,那么对于某些超越数加法消去律不成立的现象就可以理解了,它们并不是以点的形式精确位于数轴上;当然,还有另外一种可能,π确实是数轴上的点,只是我们还没找到标示它的方法。”

我的答复如下:

  1. 看得出来,您是一个实在论者,相信连续统是真实存在的。我也相信全体实数存在,否则数学研究(像微积分、泛函等)就没有意义了。所以,无论如何,必须先验地肯定全体实数的总体存在。数学(科学)的基础就是假设,数学是虚构的宇宙模型,它并不是真实的宇宙,而是人类思维中的宇宙。思维中永远存在矛盾,数学中也是如此。

  2. 我的证明结果只是表明,用数学构造(超限归纳)的方法不可能穷尽全体实数。您谈到π是不是实数系上一个点的问题,在非标准分析中,实数系上的某些点是可以无限细分的,点只是一种几何直觉,而这种直觉看来也是有问题的。

  3. 我的证明只是一种可能性,但完全还有其他的可能性,而且我并不认为我的证明是绝对正确的,它也可能有错。您期待连续统假设有一个真正真实的解答,我想也有可能存在这种答案,就像存在不同的几何学那样。但有一点是可以肯定的,千万别相信数学(科学)描述的是真实的世界。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值