公理化集合论初探
一、集合论的背景
〉 集合论是以集合概念为基础,研究集合的一般性质的数学分支学科。
“集合”是比“数”更简单的概念。集合论试图从研究集合出发,定义“数”和数的“运算”,进而发展到整个数学,是研究数学基础的学科
〉 集合是简单而又基本的不作定义的初始概念。一般来说,集合是一些确定的、相异的事物的总体
〉 按照集合中事物数目是否有限,可以分为有限集合和无限集合
无限集合是集合论研究的主要对象,也是集合论建立的关键和难点
〉 集合论的全部历史都是围绕无限概念展开的。人们把康托尔(G.Cantor,1845-1918)于1873年12月7日给戴德(R.Dedekind,1831-1916)的信中最早提出集合论思想的那一天定为集合论诞生日。
〉 康托尔对无限集合的研究使集合论成为数学中最富创造性的伟大成果之一
〉 人们对于无限的研究可以追溯到两千多年以前
〉 从芝诺悖论:二分法悖论、阿基里斯追乌龟悖论、飞箭不动悖论
芝诺悖论涉及到时间空间的连续性问题ÿ