公理化集合论初探

本文介绍了集合论的起源和发展,从公理化集合论的角度探讨了有限集和无限集的概念。文章通过康托尔的贡献、公理系统、罗素悖论和选择公理等内容,阐述了集合论如何为数学提供基础,并讨论了自然数、序集和序数的概念。最后,引入了序数和基数,展示了无穷集合的计数原理和性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

公理化集合论初探

 

一、集合论的背景

集合论是以集合概念为基础,研究集合的一般性质的数学分支学科。
集合”是比“”更简单的概念。集合论试图从研究集合出发,定义“数”和数的“运算”,进而发展到整个数学,是研究数学基础的学科
〉 集合是简单而又基本的不作定义的初始概念。一般来说,集合是一些确定的、相异的事物的总体
〉 按照集合中事物数目是否有限,可以分为有限集合无限集合

无限集合是集合论研究的主要对象,也是集合论建立的关键和难点

〉 集合论的全部历史都是围绕无限概念展开的。人们把康托尔(G.Cantor,1845-1918)于1873年12月7日给戴德(R.Dedekind,1831-1916)的信中最早提出集合论思想的那一天定为集合论诞生日
〉 康托尔对无限集合的研究使集合论成为数学中最富创造性的伟大成果之一
〉 人们对于无限的研究可以追溯到两千多年以前

〉 从芝诺悖论:二分法悖论、阿基里斯追乌龟悖论、飞箭不动悖论

芝诺悖论涉及到时间空间的连续性问题ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

smilejiasmile

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值