Python实现决策树

训练数据集来自李航的《统计学习方法》特征选择一章,决策树的生成采用ID3或者C4.5算法,决策树剪枝暂未实现。

决策树的实现还是比较容易的,主要思路如下:
1. 先计算整体类别的熵
2. 计算每个特征将训练数据集分割成的每个子集的熵,并将这个熵乘以每个子集相对于这个训练集的频率,最后将这些乘积累加,就会得到一个个特征对应的信息增益。
3. 选择信息增益最大的作为最优特征分割训练数据集
4. 递归上述过程
5. 递归结束条件:训练集的所有实例属于同一类;或者所有特征已经使用完毕。

信息增益比的概念:对于特征A,信息增益和特征A的值得熵的比值。特征A的值的熵,就是特征A分割的每个子集对应于当前训练集生成的熵。

首先是文件开头加入如下两行,便于后面相应的调用

from math import log
import operator

首先是实现熵的计算。

def calShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVect in dataSet:
        currentLabel = featVect[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = labelCounts[key] / numEntries
        shannonEnt -= prob * log(prob, 2)
    return  shannonEnt

分割训练数据集。这里需要注意append和extend的用法。

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

生成训练数据集。四个标签分别为:年龄,有无工作,有无自己的房子,信贷情况。

def createDataSet():
    dataSet = [['youth', 'no', 'no', 'just so-so', 'no'],
               ['youth', 'no', 'no', 'good', 'no'],
               ['youth', 'yes', 'no', 'good', 'yes'],
               ['youth', 'yes', 'yes', 'just so-so', 'yes'],
               ['youth', 'no', 'no', 'just so-so', 'no'],
               ['midlife', 'no', 'no', 'just so-so', 'no'],
               ['midlife', 'no', 'no', 'good', 'no'],
               ['midlife', 'yes', 'yes', 'good', 'yes'],
               ['midlife', 'no', 'yes', 'great', 'yes'],
               ['midlife', 'no', 'yes', 'great', 'yes'],
               ['geriatric', 'no', 'yes', 'great', 'yes'],
               ['geriatric', 'no', 'yes', 'good', 'yes'],
               ['geriatric', 'yes', 'no', 'good', 'yes'],
               ['geriatric', 'yes', 'no', 'great', 'yes'],
               ['geriatric', 'no', 'no', 'just so-so', 'no']]
    labels = ['age', 'work', 'house', 'credit']
    return dataSet, labels

上面一个按照ID3算法选择每次特征选择时信息增益最大的特征。如果使用C4.5算法应该选择下面一个函数,即对于信息增益比的选择。

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueValue = set(featList)
        newEntropy = 0.0
        for value in uniqueValue:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet) / len(dataSet)
            newEntropy += prob * calShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if infoGain > bestInfoGain:
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calShannonEnt(dataSet)
    bestInfoGainRatio = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueValue = set(featList)
        newEntropy = 0.0
        choosedFeatEnt = 0.0
        for value in uniqueValue:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet) / len(dataSet)
            newEntropy += prob * calShannonEnt(subDataSet)
            choosedFeatEnt -= prob * log(prob, 2)
        infoGain = baseEntropy - newEntropy
        infoGainRatio = infoGain / choosedFeatEnt
        if infoGainRatio > bestInfoGainRatio:
            bestInfoGainRatio = infoGainRatio
            bestFeature = i
    return bestFeature

当出现特征A已经被全部遍历完毕后,应该采用majorityvote策略,选择当面训练集中实例数最大的类。

def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

用字典的形式构造一棵决策树。

def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    # 训练集所有实例属于同一类
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    # 训练集的所有特征使用完毕,当前无特征可用
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel: {}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
    return myTree

测试分类结果

myDat, labels = createDataSet()
myTree = createTree(myDat, labels)
print(myTree)

ID3分类结果如下:
{‘house’: {‘yes’: ‘yes’, ‘no’: {‘work’: {‘yes’: ‘yes’, ‘no’: ‘no’}}}}
分类结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值