- tf.zeros(shape,dtype = tf.float32, name = None)
返回一个全是零的张量,数据维度是shape,数据类型是dtype
import tensorflow as tf
import numpy as np
a = tf.zeros([2,3],tf.int16)
with tf.Session() as sess:
print(sess.run(a))
2.tf.zeros_like(tensor, dtype = None, name = None)
返回一个全是零的张量,数据维度和tensor一样,数据类型为dtype。
import tensorflow as tf
import numpy as np
a = tf.zeros([2,3],tf.int16)
b = tf.zeros_like(a,tf.float32)
with tf.Session() as sess:
print("a:",sess.run(a))
print("b:",sess.run(b))
3. tf.ones(shape, dtype=tf.float32, name=None)
4. tf.ones_like(tensor, dtype=None, name=None)
import tensorflow as tf
import numpy as np
a = tf.ones([2,3],tf.int16)
b = tf.ones_like(a,tf.float32)
with tf.Session() as sess:
print("a:",sess.run(a))
print("b:",sess.run(b))
5. tf.fill(dims, value, name=None)
创建一个维度为dims,值为value的tensor对象.该操作会创建一个维度为dims的tensor对象,并将其值设置为value,该tensor对象中的值类型和value一致
当value为0时,该方法等同于tf.zeros()
当value为1时,该方法等同于tf.ones()
参数:
dims: 类型为int32的tensor对象,用于表示输出的维度(1-D, n-D),通常为一个int32数组,如:[1], [2,3]等
value: 常量值(字符串,数字等),该参数用于设置到最终返回的tensor对象值中
name: 当前操作别名(可选)
返回:
tensor对象,类型和value一致
#coding=utf8
import tensorflow as tf
sess = tf.InteractiveSession()
dim = [2,3]
data = tf.fill(dim, 5)
print(sess.run(data))
sess.close()
运行结果:
[[5 5 5]
[5 5 5]]
6 tf.truncated_normal使用方法
tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
从截断的正态分布中输出随机值。
生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择。
在正态分布的曲线中,横轴区间(μ-σ,μ+σ)内的面积为68.268949%。
横轴区间(μ-2σ,μ+2σ)内的面积为95.449974%。
横轴区间(μ-3σ,μ+3σ)内的面积为99.730020%。
X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。
在tf.truncated_normal中如果x的取值在区间(μ-2σ,μ+2σ)之外则重新进行选择。这样保证了生成的值都在均值附近。
参数:
shape: 一维的张量,也是输出的张量。
mean: 正态分布的均值。
stddev: 正态分布的标准差。
dtype: 输出的类型。
seed: 一个整数,当设置之后,每次生成的随机数都一样。
name: 操作的名字
7 tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
从正态分布中输出随机值。
参数:
shape: 一维的张量,也是输出的张量。
mean: 正态分布的均值。
stddev: 正态分布的标准差。
dtype: 输出的类型。
seed: 一个整数,当设置之后,每次生成的随机数都一样。
name: 操作的名字。
#coding=utf8
import tensorflow as tf
a = tf.Variable(tf.random_normal([2,2],seed=1))
b = tf.Variable(tf.truncated_normal([2,2],seed=2))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print("a:",sess.run(a))
print("b:",sess.run(b))
输出结果:
a: [[-0.81131822 1.48459876]
[ 0.06532937 -2.4427042 ]]
b: [[-0.85811085 -0.19662298]
[ 0.13895045 -1.22127676]]
8 tf.clip_by_value(A, min, max)
输入一个张量A,把A中的每一个元素的值都压缩在min和max之间。小于min的让它等于min,大于max的元素的值等于max。
import tensorflow as tf;
import numpy as np;
A = np.array([[1,1,2,4], [3,4,8,5]])
with tf.Session() as sess:
print sess.run(tf.clip_by_value(A, 2, 5))
输出结果:
[[2 2 2 4]
[3 4 5 5]]
9 cast(x, dtype, name=None)
将x的数据格式转化成dtype
a = tf.Variable([1,0,0,1,1])
b = tf.cast(a,dtype=tf.bool)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
print(sess.run(b))