由于最近公司采用protocol buffer(以下简称protobuf)来作为不同应用之间的数据交换,故最近一段时间研究了protobuf相关技术。在这里分享下。
protobuf是什么?
protobuf是google旗下的一款平台无关,语言无关,可扩展的序列化结构数据格式。所以很适合用做数据存储和作为不同应用,不同语言之间相互通信的数据交换格式,只要实现相同的协议格式即同一proto文件被编译成不同的语言版本,加入到各自的工程中去。这样不同语言就可以解析其他语言通过protobuf序列化的数据。目前官网提供了C++,Python,JAVA,GO等语言的支持。
protobuf 语法定义
要想使用protobuf必须得先定义proto文件。所以得先熟悉protobuf的消息定义的相关语法。下面就来介绍
首先我们先定义一个proto文件,结构如下:
1
2
3
4
5
|
message
Article
{
required
int32
article_id
=
1
;
optional
string
article_excerpt
=
2
;
repeated
string
article_picture
=
3
;
}
|
上面我们主要定义了一个消息,这个消息包括文章ID,文章摘要,文章图片。下面给出消息定义的相关说明
message是消息定义的关键字
required 表示这个字段必须的,必须在序列化的时候被赋值。
optional 代表这个字段是可选的,可以为0个或1个但不能大于1个。
repeated 则代表此字段可以被重复任意多次包括0次。
int32和string是字段的类型。后面是我们定义的字段名。
最后的1,2,3则是代表每个字段的一个唯一的编号标签,在同一个消息里不可以重复。这些编号标签用与在消息二进制格式中标识你的字段,并且消息一旦定义就不能更改。需要说明的是标签在1到15范围的采用一个字节进行编码。所以通常将标签1到15用于频繁发生的消息字段。编号标签大小的范围是1到229 – 1。此外不能使用protobuf系统预留的编号标签(19000 -19999)。
当然protobuf支持更多的类型,比如bool,double,float,枚举,也可以是其他定义过的消息类型譬如前面的消息Article。支持的基本类型如下:
下面让我们定义一个数据比较多的article.proto文件来再次说明下proto语法的相关内容,起码通过列子可以更直观的感受。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
syntax
=
"proto2"
;
message
Article
{
required
int32
article_id
=
1
;
optional
string
article_excerpt
=
2
;
repeated
string
article_picture
=
3
;
optional
int32
article_pagecount
=
4
[
default
=
0
]
;
enum
ArticleType
{
NOVEL
=
0
;
PROSE
=
1
;
PAPER
=
2
;
POETRY
=
3
;
}
optional
ArticleType
article_type
=
5
[
default
=
NOVEL
]
;
message
Author
{
required
string
name
=
1
;
//作者的名字
optional
string
phone
=
2
;
}
optional
Author
author
=
6
;
repeated
int32
article_numberofwords
=
7
[
packed
=
true
]
;
reserved
9
,
10
,
12
to
15
;
extensions
100
to
1000
;
}
extend
Article
{
optional
int32
followers_count
=
101
;
optional
int32
likes_count
=
102
;
}
message
Other
{
optional
string
other_info
=
1
;
oneof
test_oneof
{
string
code1
=
2
;
string
code2
=
3
;
}
}
|
上面proto文件,我们定义了enum枚举类型,嵌套的消息。甚至对原有的消息进行了扩展,也可以对字段设置默认值。添加注释等
此外reserved关键字主要用于保留相关编号标签,主要是防止在更新proto文件删除了某些字段,而未来的使用者定义新的字段时重新使用了该编号标签。这会引起一些问题在获取老版本的消息时,譬如数据冲突,隐藏的一些bug等。所以一定要用reserved标记这些编号标签以保证不会被使用
当我们需要对消息进行扩展的时候,我们可以用extensions关键字来定义一些编号标签供第三方扩展。这样的好处是不需要修改原来的消息格式。就像上面proto文件,我们用extend关键字来扩展。只要扩展的字段编号标签在extensions定义的范围里。
对于基本数值类型,由于历史原因,不能被protobuf更有效的encode。所以在新的代码中使用packed=true可以更加有效率的encode。注意packed只能用于repeated 数值类型的字段。不能用于string类型的字段。
在消息Other中我们看到定义了一个oneof关键字。这个关键字作用比较有意思。当你设置了oneof里某个成员值时,它会自动清除掉oneof里的其他成员,也就是说同一时刻oneof里只有一个成员有效。这常用于你有许多optional字段时但同一时刻只能使用其中一个,就可以用oneof来加强这种效果。但需要注意的是oneof里的字段不能用required,optional,repeted关键字
一般在我们的项目中肯定会有很多消息类型。我们总不能都定义在一个文件中。当一个proto文件需要另一个proto文件的时候,我们可以通过import导入,就像下面这样:
1
2
3
4
|
import
"article.proto"
;
message
Book
{
//定义消息体
}
|
protobuf也提供了包的定义,只要在文件开头定义package关键字即可。主要是为了防止命名冲突,不过对于Python语言在编译的时候会忽略包名。
1
2
3
4
|
package
"foo.bar";
message
Book
{
//定义消息体
}
|
很多时候我们会修改更新我们定义的proto文件,如果不遵守一定规则的话,修改的后proto文件可能会引发许多异常。在官网上对更新proto有以下几点要求
1.不能改变已有的任何编号标签。
2.只能添加optional和repeated的字段。这样旧代码能够解析新的消息,只是那些新添加的字段会被忽略。但是序列化的时候还是会包含哪些新字段。而新代码无论是旧消息还是新消息都可以解析。
3.非required的字段可以被删除,但是编号标签不可以再次被使用,应该把它标记到reserved中去
4.非required可以被转换为扩展字段,只要字段类型和编号标签保持一致
5.相互兼容的类型,可以从一个类型修改为另一个类型,譬如int32的字段可以修改为int64
ptotobuf语法相对比较简单,一般都能很快熟悉上手。这里只是粗浅的介绍下,更多详细内容可以参考https://developers.google.com/protocol-buffers/docs/proto。
proto文件编译
现在我们有了proto文件,需要把它编译成我们需要的语言,这里以python为例。通过以下命令生成我们需要的python代码,你会发现目录多了一个article_pb2.py的文件。
1
|
protoc
-
I
=
.
--
python_out
=
.
article
.
proto
|
-I 指定搜索proto文件的目录,这里指定为当前目录。-I 也可以写成 –proto_path
–python_out 会将生成的python代码文件放到等号后面指定的目录,这里也指定当前目录。如果需要生成其他语言的代码譬如java换成–java_out即可。这里提供一个官网提供的模版,如下
1
|
protoc
--
proto_path
=
_IMPORT_PATH_
--
cpp_out
=
_DST_DIR_
--
java_out
=
_DST_DIR_
--
python_out
=
_DST_DIR_
_path
/
to
/
file_
.
proto
|
最后指定我们要编译的proto文件。
现在我们有了编译后的article_pb2.py,加入到我们的项目中去该怎么用呢?这个时候就需要用到google提供的protobuf python API。 下面我们通过例子来简单介绍下API的使用
protobuf python api的使用
直接贴代码来看,详细的说明都在注释里。主要的SerializeToString和ParseFromString2个方法。一个序列化,一个反序列化。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
# -*- coding: utf-8 -*-
import
Article_pb2
from
google
.
protobuf
import
json_format
from
google
.
protobuf
import
text_format
article
=
Article_pb2
.
Article
(
)
article
.
article_id
=
1
# 必须赋值,不然在序列化得时候会报异常
article
.
article_excerpt
=
"文章简介"
article
.
article_type
=
2
# 内嵌消息操作
author
=
article
.
author
author
.
name
=
"oliver"
author
.
phone
=
"11111111111"
# repeated类型的字段添加
article_picture
=
article
.
article_picture
article_picture
.
append
(
"1.jpg"
)
article_picture
.
append
(
"2.jpg"
)
article
.
Extensions
[
Article_pb2
.
followers_count
]
=
30
# 给扩展得字段赋值
print
article
.
IsInitialized
(
)
# 检查required字段是否全部被赋值
"""
输出True
"""
print
article
.
ListFields
(
)
# 列出所有字段得一个元组列表
article_binary
=
article
.
SerializeToString
(
)
# 序列化API
# article.SerializePartialToString() # 也可以序列化消息,只不过它不会检查required是否被设置,也就是说可以序列化required字段没有被赋值的情况
with
open
(
"article.binary.txt"
,
"wb+"
)
as
f
:
# 保存到文件
f
.
write
(
article_binary
)
# 反序列化API ParseFromString 此外将ParseFromString换成MergeFromString这个接口来反序列化也可以
another_article
=
Article_pb2
.
Article
(
)
another_article
.
ParseFromString
(
article_binary
)
print
(
another_article
)
"""
article_id: 1
article_excerpt: "\346\226\207\347\253\240\347\256\200\344\273\213"
article_picture: "1.jpg"
article_picture: "2.jpg"
article_type: PAPER
author {
name: "oliver"
phone: "11111111111"
}
[followers_count]: 30
"""
# 消息与json相互转化, 通过json_format的MessageToJson这个API
article_json
=
json_format
.
MessageToJson
(
article
)
print
(
article_json
)
"""
{
"followersCount": 30,
"author": {
"phone": "11111111111",
"name": "oliver"
},
"articleExcerpt": "\u6587\u7ae0\u7b80\u4ecb",
"articleId": 1,
"articleType": "PAPER",
"articlePicture": [
"1.jpg",
"2.jpg"
]
}
"""
# 消息之间互相复制,主要用到CopyFrom 和MergeFrom 2个API
copy_article
=
Article_pb2
.
Article
(
)
copy_article
.
CopyFrom
(
article
)
print
(
copy_article
)
"""
注意运行以下2行注释代的码需要把 “article.Extensions[Article_pb2.followers_count] = 30”这行代码注释掉。
猜想extension是对原消息得扩展。并不完全属于Article。譬如执行一下代码会报article没有followers_count这个属性
article.followers_count = 30
google.protobuf.json_format.ParseError: Message type "Article" has no field named "followersCount".
所以将json转换为消息类型的时候, 扩展的类型无处安放。
"""
# article_init = json_format.Parse(article_json, article)
#
# print(article_init)
print
text_format
.
MessageToString
(
another_article
)
# oneof操作,会发现当执行 oneof.code2 = "code2"之后,输出的结果中没有code1.自动被清除了。
oneof
=
Article_pb2
.
Other
(
)
oneof
.
code1
=
"code1"
print
(
oneof
)
"""
code1: "code1"
"""
oneof
.
code2
=
"code2"
print
(
oneof
)
"""
code2: "code2"
"""
# 删除指定字段的数据
copy_article
.
ClearField
(
"author"
)
# 删除所有数据
copy_article
.
Clear
(
)
|
以上主要是通过python来操作protobuf序列化的数据,我们也可以将序列化后的数据通过网络发给其他应用。通过protobuf序列化的数据体量更小,传递效率相比于XML,JSON效率会更高。其他应用也不需要是python,可以是java,c++。只要实现了相同的proto协议,就可以解析发送过来的序列化数据。
以上就是本人对protobuf的理解,有不当之处还请指出,谢谢!