(M)Dynamic Programming: 413. Arithmetic Slices

46 篇文章 0 订阅

先写出几个来看看,找找规律:

A = {1,2,3,4,5,6,7}

新建一个数组res,res[i]保存0~i这些数里的等差数列个数,那么:

res[0] = 0;

res[1] = 0;

res[2] = {1,2,3}

res[3] = {1,2,3} + {2,3,4} + {1,2,3,4}

res[4] = {1,2,3} + {2,3,4} + {1,2,3,4} + {3,4,5} + {2,3,4,5} + {1,2,3,4,5}

...

可以发现,res[i]是res[i - 1]的结果加上包含了A[i]的等差数列个数。那就很好求了:

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& A) {
        if(A.size() < 3)
            return 0;
        vector<int> res(A.size(), 0);
        for(int i = 2; i < A.size(); ++i)
        {
            res[i] = res[i - 1] + countArithmic(A, 0, i);
        }
        return res[A.size() - 1];
    }
    int countArithmic(vector<int>& A, int start, int end)  //包含A[end]的等差数列个数,就是由A[end]一位一位往前找,遇到不能构成等差数列的就break
    {
        if(end - start + 1 < 3)
            return 0;
        int cha = A[end] - A[end - 1];
        int res = 0;
        for(int i = end - 1; i > start; --i)
        {
            if(A[i] - A[i - 1] == cha)
                res++;
            else
                break;
        }
        return res;
    }
};
但是!这样还是太麻烦,还可以简化的。countArithmic这个函数,往前一个一个的找,这样会有很多重复计算,但是显然,如果A[i]能和前面的两个数构成等差数列,那么也能和他们前面的数构成等差数列。如

1,2,3,4,5

4能和1,2,3构成等差数列,5能和3,4构成等差数列,那么5也能和3,4前面的构成等差数列。所以以5结尾的等差数列是以4结尾的等差数列加上{3,4,5}。

所以代码可以改进成这样:设置一个dp数组,dp[i]存的是以[i]结尾的等差数列个数,那么dp[i] = dp[i - 1] + 1;

class Solution {    
    // 2nd round        date: 2016-10-15        location: Vista Del Lago III Apartement
public:
    int numberOfArithmeticSlices(vector<int>& A) {
        if (A.size() < 3)   return 0;
        vector<int> dp(A.size(), 0);
        int res = 0;
        for (int i = 2; i < A.size(); i ++) {
            if (A[i] - A[i - 1] == A[i - 1] - A[i - 2])
                dp[i] = dp[i - 1] + 1;
            res += dp[i];
        }
        return res;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值