初看这题非常的眼熟,嗯,没错,我在UVa上刷过啊~ 马上去找源码,欢喜的打开,结果发现是个半成品代码 =_=# 查了下uHunt结果发现这题连提交都没提交过……咳咳……
没有关系,正好最近get了新技能——筛法求素数,正好拿来实验一番~
这题考的可是大名鼎鼎的哥德巴赫猜想:任一大于2的偶数都能写成两个质数之和。
思路:先打个质数表,再从头判断 i 和 (n-i) 是否同时为素数。
判断质数的方法采用Eratosthenes法,也就是埃拉托色尼筛选法。(哎妈呀这个名字太装X了有木有 ╮(╯▽╰)╭ )
Link:筛法怎么用?→http://www.csie.ntnu.edu.tw/~u91029/Prime.html
第一次提交时编译错误。后来把语言选GCC就没事了。
#include<stdio.h>
_Bool prime[1000000];
void findprime()
{
long i,j;
prime[0] = 0;
prime[1] = 0;
for(i=2;i<1000000;i++)
prime[i]=1;
for (i=2; i<1000000; i++)
if (prime[i])
for (j=i+i; j<1000000; j+=i)
prime[j] = 0;
}
int main()
{
long m,n;
findprime();
while(scanf("%ld",&n) && n!=0)
{
for(m=2;m<n;m++)
{
if(prime[m] && prime[n-m])
{
printf("%ld = %ld + %ld\n",n,m,n-m);
break;
}
}
}
return 0;
}
//在试验更高效打表时 写 j=i*i 可能会越界