POJ 2262 Goldbach's Conjecture

初看这题非常的眼熟,嗯,没错,我在UVa上刷过啊~ 马上去找源码,欢喜的打开,结果发现是个半成品代码 =_=# 查了下uHunt结果发现这题连提交都没提交过……咳咳……

没有关系,正好最近get了新技能——筛法求素数,正好拿来实验一番~

这题考的可是大名鼎鼎的哥德巴赫猜想:任一大于2的偶数都能写成两个质数之和。


思路:先打个质数表,再从头判断 i 和 (n-i) 是否同时为素数。

判断质数的方法采用Eratosthenes法,也就是埃拉托色尼筛选法。(哎妈呀这个名字太装X了有木有  ╮(╯▽╰)╭ )

Link:筛法怎么用?→http://www.csie.ntnu.edu.tw/~u91029/Prime.html


第一次提交时编译错误。后来把语言选GCC就没事了。

#include<stdio.h>

_Bool prime[1000000];

void findprime()
{
	long i,j;
    prime[0] = 0;
    prime[1] = 0;
	for(i=2;i<1000000;i++)
    	prime[i]=1;
    for (i=2; i<1000000; i++)
        if (prime[i])
            for (j=i+i; j<1000000; j+=i)
                prime[j] = 0;
}

int main()
{
	long m,n;
	findprime();
	while(scanf("%ld",&n) && n!=0)
	{
		for(m=2;m<n;m++)
		{
			if(prime[m] && prime[n-m])
			{
				printf("%ld = %ld + %ld\n",n,m,n-m);
				break;
			}
		}
	}
	return 0;
}


//在试验更高效打表时 写 j=i*i 可能会越界


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值