南山牧笛的博客

关注脑机接口、计算机视觉、图像处理、语音识别、机器学习、数据挖掘、模式识别、认知科学...

【Python】Python的数据分析(四)——数据及绘图

1. 创建数组
        numpy有五种方式可以创建数组:
① 由其他Python数据结构转换(如lists, tuples)
>>>x=np.array([0,1,2,3])
② 用NumPy内部方法创建(如arange, ones, zeros等)
>>>np.arange(2,3,0.1)
>>> np.indices((3,3))
③ 从磁盘读取标准的或自定义的数据
④ 通过使用strings或buffers创建
⑤ 使用库函数(如random)
2. Plotting
        matplotlib的基本绘制方法为plot,绘制风格有:bar, hist, box, density, area, hexbin, scatter和pie等。
        在pandas.tools.plotting也有绘图函数,参数是Series或DataFrame,这些函数为: ScatterMatrix, AndrewsCurves, ParallelCoordinates等。
        在matplotlib中,整个图像为一个Figure对象,在Figure中可以包含一个或多个Axes对象。每个Axes对象都是一个拥有自己坐标系统的绘图区域。
3. DataFrame分组
     数据分组是数据分析中重要的前提或内容,DataFrame的数据分组方法为:
DataFrame.groupby(by=None,axis=0,level=None,as_index=True,sort=True,group_keys=True,squeeze=False)
     参数内容:
     by:分组的依据,为函数或列名
     axis:坐标轴下标,默认为0
     level:维度的名称或索引
     as_index:标签是否作为索引
     sort:是否排序
     group_keys:是否添加group keys作为索引
     squeeze:是否在可能的情况下减少结果的维度
阅读更多
个人分类: Python
上一篇【Python】Python的数据分析(三)——数据文件及数据结构
下一篇tensorflow网站
想对作者说点什么? 我来说一句

python数据分析及其学习

2017年09月16日 100KB 下载

python 数据分析

2014年06月26日 8.58MB 下载

Python数据分析常用方法手册

2017年10月13日 48KB 下载

没有更多推荐了,返回首页

关闭
关闭