LeetCode#199. Binary Tree Right Side View

本文介绍了一种解决二叉树右视图问题的方法,包括两种实现方式:使用队列进行层次遍历和采用递归算法。前者利用队列记录每一层节点,并选取最右侧节点;后者则通过先访问右子树再左子树的方式,结合结果列表大小判断是否添加节点。
摘要由CSDN通过智能技术生成
  • 题目:站在一棵二叉树的右边,返回能看到的节点的值(一个list)
  • 难度:Medium
  • 思路:根据题目意思可以理解为返回二叉树每一层的最右边的节点的值,所以可以用一个队列来存储每一层的节点,遍历队列里的节点,取当前队列里的最后一个节点值(用一个size来记录上一层节点总数)
  • 代码:
public class Solution {
    public List<Integer> rightSideView(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if(root == null){
            return result;
        }
        LinkedList<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while(queue.size() > 0){
            int size = queue.size();
            for(int i = 0; i < size-1; i++){
                TreeNode node = queue.poll();
                if(node.left != null){
                    queue.offer(node.left);
                }
                if(node.right != null){
                    queue.offer(node.right);
                }
            }
            TreeNode nodeAdd = queue.poll();
            result.add(nodeAdd.val);
            if(nodeAdd.left != null){
                queue.offer(nodeAdd.left);
            }
            if(nodeAdd.right != null){
                queue.offer(nodeAdd.right);
            }
        }
        return result;      
    }
}

方法二:递归进行层次遍历,每次遍历的时候先访问右子树,同时通过一个trick(拿结果列表的大小和当前访问的数的层数进行比较)
这种递归的方式居然效率比用队列快(76% VS 27%)

public class Solution {
    public List<Integer> rightSideView(TreeNode root) {
        List<Integer> result = new ArrayList<Integer>();
        rightView(root, result, 0);
        return result;
    }

    public void rightView(TreeNode curr, List<Integer> result, int currDepth){
        if(curr == null){
            return;
        }
        if(currDepth == result.size()){
            result.add(curr.val);
        }

        rightView(curr.right, result, currDepth + 1);
        rightView(curr.left, result, currDepth + 1);

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值