问题: 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法?
解答:这个问题粗略一看可以用贪心算法解决,但运行时间太长,在一般的OJ都不能过关。
假设当台阶为n级,共有 f(n) 种跳法。通过观察可以得知,
若 n = 1: f(1) = 1;
若 n = 2: f(2) = 2 ;
若 n = 3: f(3) = 3;
若 n = 4: f(4) = 5;
若 n = 5: f(5) = 8;
.......
得到规律: f(n) = f(n-1) + f(n-2)
下面解释规律的由来:
1、已知每次可以跳 1 或者 2 个台阶,因此当位于n-1级台阶的时候,我们只有一种方法,那就是跳1个台阶,那么,有多少种方法能达到n-1级台阶?
2、同理,当位于n-2级台阶的时候,我们也只有一种方法,那就是跳2个台阶,那么有多少中方法可以到达n-2级台阶?(有人可能会问:为什么不能在 n-1 的时候跳 2 次 1级台阶,这样也能到达n? 原因是,若选择跳2次1级,则会经过n-1级台阶,这与第一种方法重合,因此这种方法只能作为第一种方法的一个子集。)
3、综合方法1 、2的结果,就是到达第n个台阶的结果。
附上原问题的Python代码实现:
def jumpFloor(n):
save = [1,2]
if(n==1):
return 1
if(n==2):
return 2
i = 2
while(i<n):
i=i+1
save.append(save[-1]+save[-2])
return save[-1]
问题拓展: 一只青蛙一次可以跳上1级台阶,也可以跳上2级,也可以跳3级 ......,也可以跳x级。求该青蛙跳上一个n级的台阶总共有多少种跳法?
得到规律 : f(n) = f(n-1) + f(n-2) + ... + f(n-x) + 1 (n>2)
由于可以直接跳n级,所以最后再补上 +1 。
问题拓展的代码实现:
def jumpFloorII(n):
if(n==1):
return 1
if(n==2):
return 2
save = [1,1,2]
i =2
while(i<n):
i = i+1
save.append(sum(save))
return save[-1]