青蛙跳台问题



问题: 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法?

解答:这个问题粗略一看可以用贪心算法解决,但运行时间太长,在一般的OJ都不能过关。

  假设当台阶为n级,共有 f(n) 种跳法。通过观察可以得知,

若 n = 1:  f(1) = 1;

若 n = 2: f(2) = 2 ;

若 n = 3: f(3) = 3;

若 n = 4: f(4) = 5; 

                若 n = 5: f(5) = 8;

                       .......

                得到规律: f(n) = f(n-1) + f(n-2)

         下面解释规律的由来:

1、已知每次可以跳 1 或者 2 个台阶,因此当位于n-1级台阶的时候,我们只有一种方法,那就是跳1个台阶,那么,有多少种方法能达到n-1级台阶?

2、同理,当位于n-2级台阶的时候,我们也只有一种方法,那就是跳2个台阶,那么有多少中方法可以到达n-2级台阶?(有人可能会问:为什么不能在 n-1 的时候跳 2 次 1级台阶,这样也能到达n? 原因是,若选择跳2次1级,则会经过n-1级台阶,这与第一种方法重合,因此这种方法只能作为第一种方法的一个子集。)

 3、综合方法1 、2的结果,就是到达第n个台阶的结果。

附上原问题的Python代码实现:

def jumpFloor(n):
    save = [1,2]
    if(n==1):
        return 1
    if(n==2):
        return 2
    i = 2
    while(i<n):
        i=i+1
        save.append(save[-1]+save[-2])
    return save[-1]


问题拓展:  一只青蛙一次可以跳上1级台阶,也可以跳上2级,也可以跳3级 ......,也可以跳x级。求该青蛙跳上一个n级的台阶总共有多少种跳法?

                  得到规律 : f(n) = f(n-1) + f(n-2) + ... + f(n-x) + 1   (n>2)

由于可以直接跳n级,所以最后再补上  +1 。

问题拓展的代码实现:

def jumpFloorII(n):
   if(n==1):
       return 1
   if(n==2):
       return 2
   save = [1,1,2]
   i =2
   while(i<n):
       i = i+1
       save.append(sum(save))
   return save[-1]



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值