Tensorflow 在损失函数中加入正则项(Normalization)

本文介绍了L1和L2正则化在TensorFlow中的应用,通过添加正则项来调整权重,L1有助于产生稀疏权重,L2则使权重更接近0,从而防止过拟合,增强模型的泛化能力。并展示了如何在TensorFlow中计算这两种正则化的具体方法。
摘要由CSDN通过智能技术生成

L1和L2正则:

举例说明,假设有一个数组 nums=[1,2,3,4]

L1 = a*(|1|+|2|+|3|+|4|)

L2 = a*(1^2+2^2+3^2+4^2)/2

其中a是系数,用于平衡正则项与经验损失函数的权重关系,即:C = loss+a*Normalization。

这里说明一下,利用L1经过训练后,会让权重得到稀疏结,即权重中的一部分项为0,这种作用相当于对原始数据进行了特征选择;利用L2进行训练后,会让权重更趋于0,但不会得到稀疏解,这样做可以避免某些权重过大;两种正则做法都可以减轻过拟合,使训练结果更加具有鲁棒性。

下面给出使用TensorFlow计算L1,L2的方法。

import tensorflow as tf
alpha = 0.5 #系数设置为0.5,alpha相当于上述a
val = tf.constant([[1,2],[3,4]],dtype=tf.float32)
l1 = tf.contrib.layers.l1_regularizer(alpha)(val)
l2 = tf.contrib.layers.l2_regularizer(alpha)(val)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print ("l1:",sess.run(l1))
    print ("l2:",sess.run(l2))

下面给出使用TensorFlow的整体训练过程:
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值