L1和L2正则:
举例说明,假设有一个数组 nums=[1,2,3,4]
L1 = a*(|1|+|2|+|3|+|4|)
L2 = a*(1^2+2^2+3^2+4^2)/2
其中a是系数,用于平衡正则项与经验损失函数的权重关系,即:C = loss+a*Normalization。
这里说明一下,利用L1经过训练后,会让权重得到稀疏结,即权重中的一部分项为0,这种作用相当于对原始数据进行了特征选择;利用L2进行训练后,会让权重更趋于0,但不会得到稀疏解,这样做可以避免某些权重过大;两种正则做法都可以减轻过拟合,使训练结果更加具有鲁棒性。
下面给出使用TensorFlow计算L1,L2的方法。
import tensorflow as tf
alpha = 0.5 #系数设置为0.5,alpha相当于上述a
val = tf.constant([[1,2],[3,4]],dtype=tf.float32)
l1 = tf.contrib.layers.l1_regularizer(alpha)(val)
l2 = tf.contrib.layers.l2_regularizer(alpha)(val)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print ("l1:",sess.run(l1))
print ("l2:",sess.run(l2))
下面给出使用TensorFlow的整体训练过程: