基于 Playwright 构建小型分布式爬虫项目实战

在面对 高并发爬取需求海量动态网页数据抓取 时,单机 Playwright 爬虫很快会遇到瓶颈:资源耗尽、响应变慢、容易被封 IP。为了提升效率、扩展能力,我们可以基于 Playwright + 分布式架构,搭建一个灵活、可扩展的小型分布式爬虫系统。

这篇文章将带你一步步完成这个小型项目的搭建,包括技术选型、架构设计、核心模块开发,实战演示!


1. 为什么用 Playwright 做分布式爬虫?

Playwright 原生支持:

  • 无头浏览器自动化,适合动态网页抓取。
  • 多浏览器/多标签页高并发。
  • 跨平台稳定性好。
  • 支持设置代理、模拟真实浏览器行为,防封性能优异。

但由于 Playwright 每个实例启动需要一定内存+CPU,因此单台服务器资源很快会打满,必须引入 分布式调度 机制,才能支撑大规模抓取任务。


2. 分布式爬虫架构设计

我们设计如下简单但实用的分布式架构👇

任务调度器(Master)
    |
    | 分发抓取任务(URL列表)
    ↓
多个爬虫 Worker 节点(Python + Playwright)
    |
    | 并发抓取网页数据
    ↓
统一存储(MongoDB / Redis / Kafka / 文件系统)

2.1 核心模块划分

模块 说明
调度器(Master) 负责 URL 任务下发、分配给 Worker
爬虫 Worker 独立运行的 Playwright 实例,接收任务抓取数据
任务队列 使用 Redis 或 RabbitMQ 缓存任务和抓取结果
存储系统 将抓取的内容统一保存,便于后续处理

这种架构可以轻松扩展到几十、上百台 Worker,只要保证调度和资源分配合理。


3. 技术选型

技术 用途
Playwright Python 浏览器控制、网页抓取
Redis 任务队列(URL、抓取结果缓存)
MongoDB 持久化存储爬取下来的网页内容
FastAPI(可选) 用来搭建简单任务管理后台(可选)
Docker(可选) Worker 节点容器化部署(提高扩展性)

为什么不用 Scrapy?Scrapy 适合静态数据采集,不太适合大量动态 JS 网站,Playwright 完美补充。


4. 核心代码模块

4.1 调度器(Master端)

简单示例:往 Redis 写入 URL 列表。

import redis

# 连接Red
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值