方法一:递归
/*
复杂度分析
时间复杂度:\mathcal{O}(N)O(N)。执行了 N/2N/2 次的交换。
空间复杂度:\mathcal{O}(N)O(N),递归过程中使用的堆栈空间。
*/
public void reverseString(char[] s) {
helper(s, 0, s.length - 1);
}
public void helper(char[] s, int left, int right) {
if (left >= right) {return;}
char temp = s[left];
s[left++] = s[right];
s[right--] = temp;
helper(s, left, right);
}
双指针 + 异或交换
public void reverseString(char[] s) {
int left = 0;
int right = s.length - 1;
while (left <= right) {
this.swap(s, left, right);
left++;
right--;
}
}
public void swap(char[] s, int i, int j) {
if (i == j) return;
s[i] ^= s[j];
s[j] ^= s[i];
s[i] ^= s[j];
}
双指针
/*
时间复杂度:\mathcal{O}(N)O(N)。执行了 N/2N/2 次的交换。
空间复杂度:\mathcal{O}(1)O(1),只使用了常数级空间。
*/
public void reverseString(char[] s) {
int left = 0; right = s.length - 1;
while (left <= right) {
char temp = s[left];
s[left++] = s[right];
s[right--] = temp;
}
}
public void reverseString(char[] s) {
int left = 0; right = s.length - 1;
while (left < right) {
char temp = s[left];
s[left++] = s[right];
s[right--] = temp;
}
}
总结:
反转字符串中 上面这两个不管是<还是<=都是可以,只是<=多交换了一次中间字符(自己跟自己交换) ,测试用例要用空数组,和数组中只有一个元素来进行测试
但是 反转字符串 如果取的是到长度的中心,即下面代码
public static void reverseString(char[] s) {
int left = 0;
int length = s.length - 1;
while (left < length / 2) {
char temp = s[left];
s[left] = s[length - left];
s[length - left] = temp;
left++;
}
}
public static void reverseString(char[] s) {
int left = 0;
int length = s.length - 1;
while (left <= length / 2) {
char temp = s[left];
s[left] = s[length - left];
s[length - left] = temp;
left++;
}
}
反转字符串中 上面这两个不管是<还是<=都应该是可以,只是<=多交换了一次中间字符(自己跟自己交换) 为什么在Leetcode中提交是错误的呢,我在java中测试hello是正确的啊?
如果是 s = [] 空数组的话,left = 0, length = -1, 这时 while (0 <= 0)下标越界 s[-1 - 0] 下标为s[-1];所以上面的两个都不都不对
反转字符串二
给定一个字符串 s 和一个整数 k,你需要对从字符串开头算起的每隔 2k 个字符的前 k 个字符进行反转。
如果剩余字符少于 k 个,则将剩余字符全部反转。
如果剩余字符小于 2k 但大于或等于 k 个,则反转前 k 个字符,其余字符保持原样。
输入: s = “abcdefg”, k = 2 输出: “bacdfeg”
提示:
该字符串只包含小写英文字母。
给定字符串的长度和 k 在 [1, 10000] 范围内。
public String reverseStr(String s, int k) {
char[] result = s.toCharArray();
for (int start = 0; start < result.length; start += 2 * k) {
int left = start, right = Math.min(start + k - 1, result.length - 1);
while (left < right) {
char temp = result[left];
result[left++] = result[right];
result[right--] = temp;
}
}
return new String(result);
}