首先介绍下负数在计算机中的表示和存储
在计算机系统中,数值一律用补码表示和存储。含符号位和数值位,符号位:0表示“正”; 1表示“负”。
正数的补码 = 原码
负数的补码 = 负数的原码取反(符号位保持不变)+ 1
列如
比如 -7 补=11111001(八位二进制) :
原码:(符号位不变) 10000111
反码:(符号位不变) 11111000
(符号位不变)加1得补码:11111001
为什么要使用补码的形式呢?
例如在减法运算中,可以看作是正数和负数的加法操作,使用补码的形式表示数值,我们就可以直接将x-y表示为 x + (-y)的处理过程
问题:写一个函数,判断给定的两个数字是否是符号相反的,不可以使用比较运算符。
例如 fun(-1, 100) == true; fun(5,6)=false; fun(-1,-2)=false; 同时,规定0属于正数。
在二进制表示中,最高位是1的话,就是负数。最高位为0则为正数。
因此我可以想办法通过位运算来判断。1 ^ 0 = 1。所以 负数^正数=负数。其实就是类似于乘法了。
bool oppositeSigns(int x, int y)
{
return ((x ^ y) < 0);
}
int main()
{
int x = 100, y = -100;
if (oppositeSigns(x, y) == true)
printf ("Signs are opposite");
else
printf ("Signs are not opposite");
return 0;
}
int x = -1, y = 2;
bool f = ((x ^ y) < 0); // true ⇒ 1 ^ 0 == 1 < 0 // 负数小于 0 异号
int x = 3, y = 2;
bool f = ((x ^ y) < 0); // false => 0 ^ 0 == 0 // 0 为正数 同号
但是,这里用到了比较运算符。其实完全可以把 <0 的比较去掉,因为我们只需要知道第一位符号位即可。
bool oppositeSigns(int x, int y)
{
return ((x ^ y) >> 31);
}
右移31位,则只剩下最高位符号位,不是0,就是1。