Gradient-Based Learning Applied to Document Recognition(梯度学习在文档识别中的应用)
- 作者:Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner
- 发表时间:December 1998
- 期刊:Proceedings of the IEEE
- 影响:世界上第一个卷积神经网络
- 论文地址:Gradient-Based Learning Applied to Document Recognition
论文简介
- 数据集:MNIST database
- 应用场景:手写字体识别
论文思想
-
卷积神经网络:局部感受野(local receptive fields)、权值共享(shared weights
)或权值复制(weights replication)和时间或空间子采样(sub-sampling)。 -
Stochastic Gradient(随机梯度下降)和 Batch

Gradient-Based Learning Applied to Document Recognition这篇论文由Yann LeCun等人于1998年发表,提出了世界上第一个卷积神经网络——LeNet-5。该网络用于手写字体识别,包含8层结构,包括卷积层、下采样层和全连接层,通过局部感受野、权值共享和子采样进行特征提取。论文详细介绍了卷积和下采样的计算公式,以及网络如何逐步减小特征图尺寸并增加通道数,最终通过全连接层进行分类。
最低0.47元/天 解锁文章
330

被折叠的 条评论
为什么被折叠?



