15.2-1
m 表如下:
m[1,2]=150,m[2,3]=360,m[3,4]=180,m[4,5]=3000,m[5,6]=1500
m[1,3]=330,m[2,4]=330,m[3,5]=930,m[4,6]=1860
m[1,4]=405,m[2,5]=2430,m[3,6]=1770
m[1,5]=1655,m[2,6]=1950
m[1,6]=2010
s 表如下:
s[1,2]=1,s[2,3]=2,s[3,4]=3,s[4,5]=4,s[5,6]=5
s[1,3]=2,s[2,4]=2,s[3,5]=4,s[4,6]=4
s[1,4]=2,s[2,5]=2,s[3,6]=4
s[1,5]=4,s[2,6]=2
s[1,6]=2
因此结果为 (A1A2)((A3A4)(A5A6)) 。
附带本题代码
#include <iostream>
#include <climits>
using std::cout;
using std::endl;
void MATRIX_CHAIN_ORDER(int *p,int n,int **m,int **s)
{
for(int i = 0; i <= n; ++i)
m[i][i] = 0;
for(int l = 2; l <= n; ++l) //计算当前矩阵链长度时的最优解,比如当前长度是4,与n无关
{
for(int i = 1; i <= n - l + 1; ++i)
{
int j = i + l - 1;
m[i][j] = INT_MAX;
for(int k = i; k <= j - 1; ++k)
{
int temp = m[i][k] + m[k+1][j] + p[i-1] * p[k] * p[j];
if(temp < m[i][j])
{
m[i][j] = temp;
s[i][j] = k;
}
}
}
}
}
void PRINT_OPTIMAL_PARENS(int **s,int i,int j)
{
if(i == j)
cout << 'A' << i;
else {
cout << '(';
PRINT_OPTIMAL_PARENS(s,i,s[i][j]);
PRINT_OPTIMAL_PARENS(s,s[i][j]+1,j);
cout << ')';
}
}
int main()
{
int p[] = {5,10,3,12,5,50,6};
int n = 6;
int **m = new int *[n+1];
int **s = new int *[n+1];
for(int i = 0; i < n + 1; ++i)
{
m[i] = new int[n+1];
s[i] = new int[n+1];
}
MATRIX_CHAIN_ORDER(p,n,m,s);
PRINT_OPTIMAL_PARENS(s,1,6);
for(int i = 0; i < n + 1; ++i)
{
delete []m[i];
delete []s[i];
}
delete []s;
delete []m;
return 0;
}
15.2-2
MATRIX_CHAIN_MULTIPLY(A,s,i,j)
if(i == j)
return A[i]
if(j == i+1)
return A[i]*A[j];
else
B1 = MATRIX_CHAIN_MULTIPLY(A,s,i,S[i,j])
B2 = MATRIX_CHAIN_MULTIPLY(A,s,S[i,j]+1,j)
return B1*B2
15.2-3
假设
P(n)≥c2n
,代入得:
15.2-4
子问题图的顶点是有序对
vij
,其中
i≤j
,如果
i=j
,顶点
vij
就没有输出边,如果
i<j
,对每一个
k
,当
边的数目:
所以顶点和边分别为 Θ(n2)、Θ(n3) 。
15.2-5
每次
l
循环时
15.2-6
数学归纳法:
当
n=1
时,不需要括号,所以成立。
当设
n≤k
时成立,当
n=k+1
时,则对该矩阵任意划分,假设划分点为
i
,则左边矩阵链长度为