CLRS 15.2矩阵链乘法

15.2-1
m 表如下:
m[1,2]=150,m[2,3]=360,m[3,4]=180,m[4,5]=3000,m[5,6]=1500
m[1,3]=330,m[2,4]=330,m[3,5]=930,m[4,6]=1860
m[1,4]=405,m[2,5]=2430,m[3,6]=1770
m[1,5]=1655,m[2,6]=1950
m[1,6]=2010

s 表如下:
s[1,2]=1,s[2,3]=2,s[3,4]=3,s[4,5]=4,s[5,6]=5
s[1,3]=2,s[2,4]=2,s[3,5]=4,s[4,6]=4
s[1,4]=2,s[2,5]=2,s[3,6]=4
s[1,5]=4,s[2,6]=2
s[1,6]=2

因此结果为 (A1A2)((A3A4)(A5A6))

附带本题代码

#include <iostream>
#include <climits>
using std::cout;
using std::endl;

void MATRIX_CHAIN_ORDER(int *p,int n,int **m,int **s)
{
    for(int i = 0; i <= n; ++i)
        m[i][i] = 0;
    for(int l = 2; l <= n; ++l) //计算当前矩阵链长度时的最优解,比如当前长度是4,与n无关
    {
        for(int i = 1; i <= n - l + 1; ++i)
        {
            int j = i + l - 1;
            m[i][j] = INT_MAX;
            for(int k = i; k <= j - 1; ++k)
            {
                int temp = m[i][k] + m[k+1][j] + p[i-1] * p[k] * p[j];
                if(temp < m[i][j])
                {
                    m[i][j] = temp;
                    s[i][j] = k;
                }
            }
        }
    }
}

void PRINT_OPTIMAL_PARENS(int **s,int i,int j)
{
    if(i == j)
        cout << 'A' << i;
    else {
        cout << '(';
        PRINT_OPTIMAL_PARENS(s,i,s[i][j]);
        PRINT_OPTIMAL_PARENS(s,s[i][j]+1,j);
        cout << ')';
    }
}

int main()
{
    int p[] = {5,10,3,12,5,50,6};
    int n = 6;
    int **m = new int *[n+1];
    int **s = new int *[n+1];
    for(int i = 0; i < n + 1; ++i)
    {
        m[i] = new int[n+1];
        s[i] = new int[n+1];
    }
    MATRIX_CHAIN_ORDER(p,n,m,s);
    PRINT_OPTIMAL_PARENS(s,1,6);
    for(int i = 0; i < n + 1; ++i)
    {
        delete []m[i];
        delete []s[i];
    }
    delete []s;
    delete []m;
    return 0;
}

15.2-2

MATRIX_CHAIN_MULTIPLY(A,s,i,j)
    if(i == j)
        return A[i]
    if(j == i+1)
        return A[i]*A[j];
    else
        B1 = MATRIX_CHAIN_MULTIPLY(A,s,i,S[i,j])
        B2 = MATRIX_CHAIN_MULTIPLY(A,s,S[i,j]+1,j)
        return B1*B2

15.2-3
假设 P(n)c2n ,代入得:

P(n)=k=1n1P(k)P(nk)k=1n1c2kc2nk=c2k=1n12k2nk=c2k=1n12n=c2(n1)2nc2n

15.2-4
子问题图的顶点是有序对 vij ,其中 ij ,如果 i=j ,顶点 vij 就没有输出边,如果 i<j ,对每一个 k ,当 ik<j 时包含边 (vij,vik),(vij,vk+1,j) ,这两条边表示解救 Ai...Aj 的最优解为 Ai...Ak Ak+1..Aj 的最优解乘积。顶点数为:

i=1nj=1n1=n(n+1)2

边的数目:
i=1nj=1n(ji)=(n1)n(n+1)6

所以顶点和边分别为 Θ(n2)Θ(n3)

15.2-5
每次 l 循环时 i 循环执行 nl+1 次,每次 i 循环时 k 循环执行 ji=l1 次,每次 k 循环执行访问 m 两次,总的就是 nl=2(nl+1)(l1)2 ,所以有:

i=1nj=1nR(i,j)=l=2n(nl+1)(l1)2=2l=1n1(nl)l=n3n3

15.2-6
数学归纳法:
n=1 时,不需要括号,所以成立。
当设 nk 时成立,当 n=k+1 时,则对该矩阵任意划分,假设划分点为 i ,则左边矩阵链长度为 i,因此需要 i1 个括号,右边矩阵链长度为 k+1i ,因此需要 ki 个括号,总的需要 ki+i1=k1 个括号,因为最外面需要一个括号,所以共 k <script type="math/tex" id="MathJax-Element-83">k</script> 个括号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值