大数加法--回文数

Problem 118: 回文数
Time Limit:1 Ms| Memory Limit:64 MB
Difficulty:

Description
 若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
  例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。

  又如:对于10进制数87:
  STEP1:87+78 = 165 STEP2:165+561 = 726
  STEP3:726+627 = 1353 STEP4:1353+3531 = 4884

  在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。

  写一个程序,给定一个N(2<=N<=16)进制数M(其中数字为0-9大于,10进制的字母为A-F),求最少经过几步可以得到回文数。
  如果在40步以内(包含40步)不可能得到回文数,则输出“Impossible!”
Input
两行,N与M
Output
如果能在40步以内得到回文数,输出“STEP=xx”(不含引号),其中xx是步数;否则输出一行”Impossible!”(不含引号)
Sample Input
9
87
Sample Output
STEP=6
Hint
M < 20位


思路:注意题目里说的m是小于20位的数,有可能是19为,long long 只能表示到18位,故要用大数。另外,输入的m有可能包含A -- Z,不要忘了处理这种情况。


#include<stdio.h>
#include<string.h>
 
int main(){
    int n, len, l, i, step, flag;
    int a[300], result[300];
    char m[30];
     
    scanf("%d %s", &n, m);
    len = strlen(m);
    memset(a, 0, sizeof(a));
     
    l = 0;
    for(i = len - 1; i >= 0; i--){
        if(m[i] >= '0' && m[i] <= '9')
            a[l++] = m[i] - '0';
        else
            a[l++] = m[i] - 'A' + 10;   
    }
     
    step = 0;
    while(1){
         
        if(step > 40){
            printf("Impossible!\n");
            break;
        }
        flag = 0;
        for(i = 0; i < l; i++){
            if(a[i] != a[l - i - 1]){
                flag = 1;
                break;
            }
        }
        if(!flag){
            printf("STEP=%d\n", step);
            break;
        }
         
        memset(result, 0, sizeof(result));
        for(i = 0; i < l; i++){
            result[i] = a[i] + a[l - i - 1];
        }
         
        for(i = 0; i < 295; i++){
            result[i + 1] += result[i] / n;
            result[i] %= n;
            a[i] = result[i];
        }
         
        for(i = 294; i >= 0; i--){
            if(a[i]){
                l = i + 1;
                break;
            }
        }
         
        step ++;
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值