Problem 118: 回文数
Time Limit:1 Ms| Memory Limit:64 MB
Difficulty:
Description
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165 STEP2:165+561 = 726
STEP3:726+627 = 1353 STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
写一个程序,给定一个N(2<=N<=16)进制数M(其中数字为0-9大于,10进制的字母为A-F),求最少经过几步可以得到回文数。
如果在40步以内(包含40步)不可能得到回文数,则输出“Impossible!”
Input
两行,N与M
Output
如果能在40步以内得到回文数,输出“STEP=xx”(不含引号),其中xx是步数;否则输出一行”Impossible!”(不含引号)
Sample Input
9
87
Sample Output
STEP=6
Hint
M < 20位
Time Limit:1 Ms| Memory Limit:64 MB
Difficulty:
Description
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165 STEP2:165+561 = 726
STEP3:726+627 = 1353 STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
写一个程序,给定一个N(2<=N<=16)进制数M(其中数字为0-9大于,10进制的字母为A-F),求最少经过几步可以得到回文数。
如果在40步以内(包含40步)不可能得到回文数,则输出“Impossible!”
Input
两行,N与M
Output
如果能在40步以内得到回文数,输出“STEP=xx”(不含引号),其中xx是步数;否则输出一行”Impossible!”(不含引号)
Sample Input
9
87
Sample Output
STEP=6
Hint
M < 20位
思路:注意题目里说的m是小于20位的数,有可能是19为,long long 只能表示到18位,故要用大数。另外,输入的m有可能包含A -- Z,不要忘了处理这种情况。
#include<stdio.h>
#include<string.h>
int main(){
int n, len, l, i, step, flag;
int a[300], result[300];
char m[30];
scanf("%d %s", &n, m);
len = strlen(m);
memset(a, 0, sizeof(a));
l = 0;
for(i = len - 1; i >= 0; i--){
if(m[i] >= '0' && m[i] <= '9')
a[l++] = m[i] - '0';
else
a[l++] = m[i] - 'A' + 10;
}
step = 0;
while(1){
if(step > 40){
printf("Impossible!\n");
break;
}
flag = 0;
for(i = 0; i < l; i++){
if(a[i] != a[l - i - 1]){
flag = 1;
break;
}
}
if(!flag){
printf("STEP=%d\n", step);
break;
}
memset(result, 0, sizeof(result));
for(i = 0; i < l; i++){
result[i] = a[i] + a[l - i - 1];
}
for(i = 0; i < 295; i++){
result[i + 1] += result[i] / n;
result[i] %= n;
a[i] = result[i];
}
for(i = 294; i >= 0; i--){
if(a[i]){
l = i + 1;
break;
}
}
step ++;
}
return 0;
}