数字图像处理—局部增强

本文探讨了局部增强技术在图像处理领域的应用,详细介绍了直方图变换方法及其在图像局部增强中的实现方式。通过将图像划分为多个小区域,并针对每个小区域进行针对性的增强处理,实现了对比度提升和细节优化的目标。该技术适用于要求特定增强效果的场景,如突出图像中的某些部分或改善图像的整体视觉质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

局部增强常用于一些要求特定增强效果的场合:

(1)局部增强可借助将图像分成子图像(一般奇x奇)再对每个子图像具体增强。

直方图变换是空域增强中最常采用的方法,它也很容易用于图像的局部增强。只需先将图像分成一系列(一般互相不重叠)小区域(子图像),此时直方图均衡化或规定化都可以基于小区域内的像素分布进行,从而使各小区域得到不同的增强效果。(对每个小区域进行全局增强)

(2)也可在对整幅图增强时直接利用局部信息以达到不同局部不同增强的目的。

1、分别是以像素为中心的邻域内的灰度均值和均方差值(标准差、是一个反差(对比的差异程度)的测度)。

2、M是的平均灰度值(即整幅图像的平均灰度,是一个平均亮度的测度)。

3、A(x, y)是一个放大倍数,k是一个比例常数。

4、减去是原始图与平均灰度的差异,然后将“差异”放大,最后将加回去是为了恢复原区域的平均灰度值。

5、其中越大的地方,灰度变化就越大,放大倍数越小;越小的地方,越平滑,增强效果放大。使得不同的地方采用不同的放大倍数,以像素为中心,与局部特征有关。(因为A(x, y)反比与均方差,所以在图像中对比度较小的区域得到的增益反而增大,这样就可以取得局部增强的效果。)




评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值