Prime Path
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9833 | Accepted: 5648 |
Description
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
1733
3733
3739
3779
8779
8179
Input
One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
Output
One line for each case, either with a number stating the minimal cost or containing the word Impossible.
Sample Input
3 1033 8179 1373 8017 1033 1033
Sample Output
6 7 0 分析:简单广搜+判断素数。#include <iostream> #include <cstring> #include <cstdio> #include <queue> using namespace std; bool visit[10000]; bool prime[10000]; int x, y, f; int dd[] = {1000, 100, 10, 1}; struct Data { int num; int sum; }; queue<Data>q; void fun()//筛法求素数 { prime[1] = 1; prime[2] = 0; for (int i = 2; i <= 100; i++) { if (!prime[i]) { int j = i * 2; while (j < 10000) { prime[j] = 1; j = j + i; } } } } int main() { int n; scanf("%d", &n); fun(); while (n--) { f = 0; scanf("%d%d", &x, &y); memset(visit, 0, sizeof(visit)); if (x == y) { printf("0\n"); continue; } Data data; data.num = x; data.sum = 0; q.push(data); visit[x] = 1; int b[4]; while (!q.empty()) { data = q.front(); q.pop(); b[0] = data.num / 1000; b[1] = data.num / 100 % 10; b[2] = data.num / 10 % 100 - b[1] * 10; b[3] = data.num % 1000 - b[1] * 100 - b[2] * 10;//把四位数分离 for (int i = 0; i < 4; i++) { int l = 1; for (int k = (b[i] + 1) % 10; l <= 9; l++, k = (k + 1) % 10)//变化其中一位 { int sum = 0; for (int j = 0; j < 4; j++) { if (j == i) sum += k * dd[i]; else sum += b[j] * dd[j]; }//求和 if (sum / 1000 == 0) continue; if (sum == y) { printf("%d\n", data.sum + 1); f = 1; break; } if (!visit[sum] && !prime[sum]) { Data c; c.num = sum; c.sum = data.sum + 1; visit[sum] = 1; q.push(c); } } if (f == 1) break; } if (f == 1) break; } while (!q.empty()) q.pop(); } return 0; }