欧拉定理,也被称为欧拉多项式定理,是数学上的一个定理,描述了一个多项式在复数域上的根与系数的关系。欧拉定理的表述如下:
对于一个次数为n的多项式P(x),如果它的n个根分别为a₁, a₂, ..., aₙ,则有如下关系式成立:
P(x) = (x-a₁)(x-a₂)...(x-aₙ) = xⁿ + p₁xⁿ⁻¹ + p₂xⁿ⁻² + ... + pₙ₋₁x + pₙ
其中p₁, p₂, ..., pₙ为多项式P(x)的系数。
为了证明欧拉定理,我们可以利用数学归纳法。首先考虑一个一次多项式的情况,即n=1。对于一个一次多项式P(x) = x - a₁,它的根只有一个,为a₁。欧拉定理成立,因为(x - a₁) = x - a₁。
假设对于任意次数为k的多项式,欧拉定理都成立。即如果P(x)的根为a₁, a₂, ..., aₖ,则有P(x) = (x-a₁)(x-a₂)...(x-aₖ)。
考虑一个次数为k+1的多项式P(x),假设它的根为a₁, a₂, ..., aₖ₊₁。利用欧拉定理的假设,我们可以写出P(x)的因式分解表达式:
P(x) = (x-a₁)(x-a₂)...(x-aₖ)·(x-aₖ₊₁)
由于(x-a₁)(x-a₂)...(x-aₖ)也是一个次数为k的多项式,根据我们的假设,它可以写成如下形式:
(x-a₁)(x-a₂)...(x-aₖ) = xᵏ + p₁xᵏ⁻¹ + p₂xᵏ⁻² + ... + pₖ₋₁x + pₖ
将这个结果代入P(x)的因式分解表达式中,可以得到:
P(x) = (xᵏ + p₁xᵏ⁻¹ + p₂xᵏ⁻² + ... + pₖ₋₁x + pₖ) * (x-aₖ₊₁)
展开右边的乘积,可以得到:
P(x) = xᵏ⁺¹ + (p₁ + aₖ₊₁)xᵏ + (p₂ + p₁aₖ₊₁)xᵏ⁻¹ + ... + (pₖ₋₁ + pₖ₋₂aₖ₊₁)x + pₖaₖ₊₁
可以发现,xᵏ⁺¹的系数为1,而其他x的幂次项的系数为由P(x)的系数p₁, p₂, ..., pₖ₋₁, pₖ和根a₁, a₂, ..., aₖ₊₁所组成的新的系数。这证明了对于任意次数为k+1的多项式P(x),欧拉定理成立。
由数学归纳法的原理,欧拉定理对于任意次数的多项式都成立。
因此,欧拉定理得证。