1. 线性无关向量组定义1
如果
x
1
\pmb{x}_1
xxx1,
x
2
\pmb{x}_2
xxx2,
.
.
.
\pmb{...}
.........,
x
r
(
r
≥
1
)
\pmb{x}_r(r\ge1)
xxxr(r≥1)为线性空间
V
V
V中一组向量,
k
1
{k}_1
k1,
k
2
{k}_2
k2,
.
.
.
{...}
...,
k
r
{k}_r
kr是数域
P
P
P中的数,那么向量
x
=
k
1
x
1
+
k
2
x
2
+
.
.
.
+
k
r
x
r
(1)
\pmb{x}=k_1\pmb{x}_1+k_2\pmb{x}_2+\pmb{...}+k_r\pmb{x}_r \tag{1}
xxx=k1xxx1+k2xxx2+.........+krxxxr(1) 称为向量
x
1
\pmb{x}_1
xxx1,
x
2
\pmb{x}_2
xxx2,
.
.
.
\pmb{...}
.........,
x
r
\pmb{x}_r
xxxr的一个线性组合,有时也可以说向量
x
\pmb{x}
xxx可用向量组
x
2
\pmb{x}_2
xxx2,
.
.
.
\pmb{...}
.........,
x
r
\pmb{x}_r
xxxr线性表示。
如果式
(
1
)
(1)
(1)中的
k
1
{k}_1
k1,
k
2
{k}_2
k2,
.
.
.
{...}
...,
k
r
{k}_r
kr不全为零,且使
k
1
x
1
+
k
2
x
2
+
.
.
.
+
k
r
x
r
=
0
(2)
k_1\pmb{x}_1+k_2\pmb{x}_2+\pmb{...}+k_r\pmb{x}_r = \pmb{0} \tag{2}
k1xxx1+k2xxx2+.........+krxxxr=000(2)则称向量组
x
1
\pmb{x}_1
xxx1,
x
2
\pmb{x}_2
xxx2,
.
.
.
\pmb{...}
.........,
x
r
\pmb{x}_r
xxxr线性相关,否则就称其为线性无关。换句话说,如果等式
(
2
)
(2)
(2)只有在
k
1
=
k
2
=
.
.
.
=
k
r
=
0
k_1 = k_2 = \pmb{...} = k_r = 0
k1=k2=.........=kr=0时才成立,则称
x
1
\pmb{x}_1
xxx1,
x
2
\pmb{x}_2
xxx2,
.
.
.
\pmb{...}
.........,
x
r
\pmb{x}_r
xxxr线性无关。
2. 以两个线性无关向量为例
v
1
=
(
−
1
,
2
,
−
1
)
,
v
2
=
(
0
,
2
,
−
1
)
\pmb{v}_1=(-1,\;2,-1), \pmb{v}_2=(\;\;\;0,\;2,-1)
vvv1=(−1,2,−1),vvv2=(0,2,−1)向量
v
1
,
v
2
\pmb{v}_1,\pmb{v}_2
vvv1,vvv2的线性组合为
v
=
k
1
v
1
+
k
2
v
2
=
k
1
(
−
1
,
2
,
−
1
)
+
k
2
(
0
,
2
,
−
1
)
\pmb{v}=k_1\pmb{v}_1+k_2\pmb{v}_2=k_1(-1,2,-1)+k_2(0,2,-1)
vvv=k1vvv1+k2vvv2=k1(−1,2,−1)+k2(0,2,−1)当
v
\pmb{v}
vvv为
0
\pmb{0}
000时,可得到如下线性方程组
{
−
k
1
+
0
=
0
2
k
1
+
2
k
2
=
0
−
k
1
−
k
2
=
0
\begin{cases} -k_1+0 \;\;\;=0 \\ \;2k_1+2k_2=0 \\ -k_1-\;\;k_2=0 \end{cases}
⎩⎪⎨⎪⎧−k1+0=02k1+2k2=0−k1−k2=0
只有当
k
1
,
k
2
\pmb{k}_1,\pmb{k}_2
kkk1,kkk2同时为0时,才满足上述线性方程组,因此向量
v
1
,
v
2
\pmb{v}_1,\pmb{v}_2
vvv1,vvv2线性无关,但向量
v
1
,
v
2
\pmb{v}_1,\pmb{v}_2
vvv1,vvv2的内积
(
v
1
,
v
2
)
=
0
+
4
+
1
=
5
≠
0
(\pmb{v}_1,\pmb{v}_2)=0+4+1=5\ne0
(vvv1,vvv2)=0+4+1=5=0,因此并不正交。
线性无关向量组可使用施密特(Schmidt)正交化方法进行正交化。
方保镕,周继东,李医民. 矩阵论. 北京:清华大学出版社,2004.11(P8) ↩︎