线性无关向量不一定正交

1. 线性无关向量组定义1

       如果 x 1 \pmb{x}_1 xxx1 x 2 \pmb{x}_2 xxx2 . . . \pmb{...} ......... x r ( r ≥ 1 ) \pmb{x}_r(r\ge1) xxxr(r1)为线性空间 V V V中一组向量, k 1 {k}_1 k1 k 2 {k}_2 k2 . . . {...} ... k r {k}_r kr是数域 P P P中的数,那么向量 x = k 1 x 1 + k 2 x 2 + . . . + k r x r (1) \pmb{x}=k_1\pmb{x}_1+k_2\pmb{x}_2+\pmb{...}+k_r\pmb{x}_r \tag{1} xxx=k1xxx1+k2xxx2+.........+krxxxr(1) 称为向量 x 1 \pmb{x}_1 xxx1 x 2 \pmb{x}_2 xxx2 . . . \pmb{...} ......... x r \pmb{x}_r xxxr的一个线性组合,有时也可以说向量 x \pmb{x} xxx可用向量组 x 2 \pmb{x}_2 xxx2 . . . \pmb{...} ......... x r \pmb{x}_r xxxr线性表示。
       如果式 ( 1 ) (1) (1)中的 k 1 {k}_1 k1 k 2 {k}_2 k2 . . . {...} ... k r {k}_r kr不全为零,且使 k 1 x 1 + k 2 x 2 + . . . + k r x r = 0 (2) k_1\pmb{x}_1+k_2\pmb{x}_2+\pmb{...}+k_r\pmb{x}_r = \pmb{0} \tag{2} k1xxx1+k2xxx2+.........+krxxxr=000(2)则称向量组 x 1 \pmb{x}_1 xxx1 x 2 \pmb{x}_2 xxx2 . . . \pmb{...} ......... x r \pmb{x}_r xxxr线性相关,否则就称其为线性无关。换句话说,如果等式 ( 2 ) (2) (2)只有在 k 1 = k 2 = . . . = k r = 0 k_1 = k_2 = \pmb{...} = k_r = 0 k1=k2=.........=kr=0时才成立,则称 x 1 \pmb{x}_1 xxx1 x 2 \pmb{x}_2 xxx2 . . . \pmb{...} ......... x r \pmb{x}_r xxxr线性无关。

2. 以两个线性无关向量为例

        v 1 = ( − 1 ,    2 , − 1 ) , v 2 = (        0 ,    2 , − 1 ) \pmb{v}_1=(-1,\;2,-1), \pmb{v}_2=(\;\;\;0,\;2,-1) vvv1=(1,2,1),vvv2=(0,2,1)向量 v 1 , v 2 \pmb{v}_1,\pmb{v}_2 vvv1,vvv2的线性组合为
v = k 1 v 1 + k 2 v 2 = k 1 ( − 1 , 2 , − 1 ) + k 2 ( 0 , 2 , − 1 ) \pmb{v}=k_1\pmb{v}_1+k_2\pmb{v}_2=k_1(-1,2,-1)+k_2(0,2,-1) vvv=k1vvv1+k2vvv2=k1(1,2,1)+k2(0,2,1) v \pmb{v} vvv 0 \pmb{0} 000时,可得到如下线性方程组
{ − k 1 + 0        = 0    2 k 1 + 2 k 2 = 0 − k 1 −      k 2 = 0 \begin{cases} -k_1+0 \;\;\;=0 \\ \;2k_1+2k_2=0 \\ -k_1-\;\;k_2=0 \end{cases} k1+0=02k1+2k2=0k1k2=0
只有当 k 1 , k 2 \pmb{k}_1,\pmb{k}_2 kkk1,kkk2同时为0时,才满足上述线性方程组,因此向量 v 1 , v 2 \pmb{v}_1,\pmb{v}_2 vvv1,vvv2线性无关,但向量 v 1 , v 2 \pmb{v}_1,\pmb{v}_2 vvv1,vvv2的内积 ( v 1 , v 2 ) = 0 + 4 + 1 = 5 ≠ 0 (\pmb{v}_1,\pmb{v}_2)=0+4+1=5\ne0 (vvv1,vvv2)=0+4+1=5=0,因此并不正交。

线性无关向量组可使用施密特(Schmidt)正交化方法进行正交化。


  1. 方保镕,周继东,李医民. 矩阵论. 北京:清华大学出版社,2004.11(P8) ↩︎

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值