Adaboost

一、强可学习与弱可学习

1.定义

在PAC(概率近似正确)学习框架下,一个概念(一个类),如果存在一个多项式的学习算法能够学习,并且正确率很高,则为强可。反之,如果存在一个多项式学习算法能够学习,但正确率仅仅比随机猜测略好,则为弱可。

2.定理

在PAC学习框架下,一个概念是强可学习的充要条件是这个概念是弱可学习的。

提升算法就是将一般的弱可学习模型构建组合而成强可学习模型。

二、Adaboost

对于提升算法来说,有两个问题,第一个是在每一轮如何改变训练数据的权值或概率分布;二是如何将弱分类器组合成强分类器。

Adaboost是弱化分类器错误分类样本的权值,降低正确分类样本的权值,从而改变训练数据的权值。

1.训练误差

能在学习中不断减少训练误差,训练误差以指数速率下降。

2.Adaboost特性

多数表决。可认为是模型为加法模型,损失函数为指数函数,学习算法为前向分步算法(每步只学习一个基函数及其系数)的二类分类学习方法。

3.实例——提升树

以分类树或回归树为基本分类器的提升方法。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值