深度学习
文章平均质量分 89
大姨妈V
兴趣遍地都是,专注和持之以恒才是真正稀缺的。
展开
-
【深度学习】卷积神经网络入门
卷积神经网络入门 本节主要讲卷积神经网络的组成。卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即:INPUT(输入层)-CONV(卷积层)-RELU(激活函数)-POOL(池化层)-FC(全连接层)。 1. 卷积层 主要介绍卷积层的构成、卷积层的作用、卷积层的特性、卷积的过程、卷积层输出特征图的大小的计算。【卷积层的作用】 卷积层,一般用来做特征提取。【卷积层...转载 2018-05-17 15:06:59 · 4756 阅读 · 2 评论 -
如何使用高大上的方法调参数
转载: 本文原作者袁洋,原载于知乎专栏理论与机器学习。本文转载自:http://www.sohu.com/a/201362073_717210本文主要介绍作者与 Elad Hazan, Adam Klivans 合作的最新论文:Hyperparameter Optimization: A Spectral Approach(https://arxiv.org/abs/1706.00764)那么,在...转载 2018-07-02 21:56:02 · 1401 阅读 · 0 评论 -
神经网络有什么理论支持?
转载:本文原作者袁洋,本文原载于作者的知乎专栏——理论与机器学习三秒钟理解本文主旨:问:神经网络有什么理论支持?答:目前为止(2017 年)没有什么特别靠谱的。2012年之后,随着深度学习的浪潮卷来,大家逐渐认可了神经网络/深度学习这个东西,都知道它在很多应用场景下面表现得很好。但是,它常常被人诟病的一点就是,就算它表现很好,却没有一个很好的理论解释。相比之下,很多算法虽然实际表现一般,但是在理论...转载 2018-07-02 21:54:19 · 1019 阅读 · 0 评论 -
【深度学习】GoogleNet原理解析与tensorflow实现
【深度学习】GoogleNet原理解析与tensorflow实现tensorflow.contrib.slim.python.slim.nets中已经搭建好了经典卷积神经网络: alexnet\vgg\inception_v1_v2_v3\resnet转载 2018-06-27 16:03:57 · 14209 阅读 · 6 评论 -
全球深度学习系统市场报告:Top 6 深度学习企业
原文发布时间:2016-12-02 11:39本文作者:新智元本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网摘要: 深度学习的应用越来越广,而起码在未来五年,这个领域仍将由这些顶尖的公司和机构领军。 Technavio是一家全球技术研究与咨询公司,其最近的《全球深度学习系统市场报告》选出了全球Top 6的深度学习机构,分别是谷歌的母公司Alphabet、伯克利视觉学习中心(BVLC)、...转载 2018-06-27 11:31:47 · 827 阅读 · 0 评论 -
【深度学习经典论文】Backpropagation applied to Handwritten zip code recognition ----LeCun
【深度学习】Backpropagation applied to Handwritten zip code recognition ----LeCun 此篇注解LeCun的CNN名作,主要讲述了反向传播算法在手写邮政编码识别中的应用 转载请注明出处:一.整篇结构 1.introduction 2.zip codes 2.1 data base ...原创 2018-06-19 20:33:23 · 8562 阅读 · 1 评论 -
【卷积神经网络发展历程】从LeNet、AlexNet到ResNet、SENet
经典的LeNet诞生于1998年。然而之后CNN的锋芒开始被SVM等手工设计的特征盖过。随着ReLU和dropout的提出,以及GPU和大数据带来的历史机遇,CNN在2012年迎来了历史突破–AlexNet,从此CNN呈现爆炸式发展。 从此,Deep Learning一发不可收拾,ILSVRC每年都不断被Deep Learning刷榜,如图1所示,随着模型变得越来越深,Top-5...原创 2018-06-30 22:23:36 · 27530 阅读 · 3 评论 -
【深度学习】VGGNet原理解析及实现
【深度学习】VGGNet原理解析及实现 VGGNet由牛津大学的视觉几何组(Visual Geometry Group)和Google DeepMind公司的研究员共同提出,是ILSVRC-2014中定位任务第一名和分类任务第二名。其突出贡献在于证明使用很小的卷积(3*3),增加网络深度可以有效提升模型的效果,而且VGGNet对其他数据集具有很好的泛化能力。到目前为止,VGGNet依...原创 2018-06-25 21:55:01 · 22552 阅读 · 3 评论 -
【深度学习】AlexNet原理解析及实现
【深度学习】AlexNet原理解析及实现 Alex提出的alexnet网络结构模型,在imagenet2012图像分类challenge上赢得了冠军。 要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet,这是CNN在图像分类上的经典模型。一、Alexnet结构alexNet为8层深度网络,其中5层卷积层和3层全连接层,不计LRN层和池化层。如下图所示: ...原创 2018-06-24 21:28:18 · 33715 阅读 · 4 评论 -
【深度学习】用tensorflow搭建自己的神经网络
【深度学习】用python搭建自己的神经网络原创 2018-05-28 17:24:44 · 32900 阅读 · 3 评论 -
【机器学习】神经网络介绍
【深度学习】神经网络介绍神经元激活函数感知机与多层网络误差反向传播 参考:周志华《机器学习》 "神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应" [Kohonen, 1988] .1.神经元模型 神经网络中最基本的成分是神经元 (neuron)模型,即上述中提到的"简单单元"。在生物神经网络中,每个神经元与...原创 2018-05-28 15:51:36 · 7345 阅读 · 0 评论 -
【tensorflow】mnist手写数字识别--tensorflow实现
mnist手写数字识别--tensorflow实现代码:#!/usr/bin/env python# _*_ coding: utf-8 _*_import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 定义神经网络模型的评估部分def compute_accuracy(test...原创 2018-05-18 15:53:55 · 13479 阅读 · 0 评论 -
为什么说随机最速下降法 (SGD) 是一个很好的方法?
转载:本文原作者袁洋,原文载于作者的知乎专栏——理论与机器学习,雷锋网经授权发布。转载自:http://www.sohu.com/a/190641434_114877本文主要介绍 SGD 算法,和两篇分析它逃离鞍点的论文: 我与鬲融,金驰,黄芙蓉写的 Escaping From Saddle Points – Online Stochastic Gradient for Tensor Decomp...转载 2018-07-02 22:03:08 · 795 阅读 · 0 评论