【机器学习】logistic回归原理分析及python实现

本文深入解析Logistic回归,包括sigmoid函数、梯度上升算法及其优化,探讨数据缺失值处理策略,并通过Python实现马疝气病预测案例。通过梯度上升法寻找最佳回归系数,随机梯度上升作为改进方法,解决大规模数据计算复杂度问题。
摘要由CSDN通过智能技术生成

【机器学习】logistic回归原理分析及python实现

1.sigmoid函数和logistic回归分类器

2.梯度上升最优化算法

3.数据中的缺失项处理

4.logistic实现马疝气病预测


        首先阐述logistic回归的定义,然后介绍一些最优化算法,其中包括基本的梯度上升算法和改进的随机梯度上升算法,这些最优化算法用于分类器的训练,最后给出logistic回归实例,预测一匹有疝气病的马是否被治愈(二分类)。

一.sigmoid函数和logistic回归分类器

1.什么是回归?

    假设现在有一些数据点,我们用一条直线来对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称做回归。

2.sigmoid函数

    我们想要的函数应该是,接受所有的输入,然后预测出类别。例如,在二类情况下,输出0和1。像单位阶跃函数就可以实现,但该函数在跳跃点上从0->1是瞬间跳跃,这个瞬间跳跃过程有时很难处理。于是另一个有类似性质且数学上更易处理的函数出现了-----sigmoid函数。

         sigmoid函数表达式:

                            

        实现:    

"""
函数:sigmoid函数
"""
def sigmoid(z):
    return 1.0/(1+np.exp(-z) )

3.sigmoid函数如何用于二分类?

        为了实现logistic回归分类器,可以在每个特征上都乘以一个回归系数w,然后把所有的结果值相加得到z值,将这个z值带入sigmoid函数中,会输出一个在【0,1】内的数值。分类:z>0.5,输出1;z<0.5,输出0。

    1)输入样本:  X=(x0,x1……xn)  

    2)如何将样本值转化为sigmoid的输入?x-> z

       相应的回归系数W=(w0,w1……wn),样本特征值与相应系数相乘求和:

    3)带入sigmoid函数: 


4.logistic 回归的优点与缺点?

        优点:计算代价不高,易于理解与实现(简单)。 
        缺点:容易欠拟合,分类精度可能不高。 

        适用数据类型:数值型和标称型数据。

5.logistic回归的一般过程? 

    1、收集数据:任何方式 
    2、准备数据:由于要计算距离,因此要求数据都是数值型的,另外结构化

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值