【深度学习】用tensorflow搭建自己的神经网络
1.创建一个神经网络层
2.运用神经网络层搭建完整神经网络
3.显示训练过程
4.tensorboard展示神经网络图
之前已经讲过了神经网络的基本知识:【机器学习】神经网络介绍 和 【深度学习】卷积神经网络入门
本节用tensorflow来搭建一个神经网络,实现y=x*x+1的拟合。
1.创建一个神经网络层
在之前的学习中,了解到一个完整的神经网络,包括输入层、卷积层、池化层、全连接层等部分。在tensorflow中,也已经有了专门的卷积层函数,例如:tf.nn.conv2d(卷积)、tf.nn.max_pool(池化)等。
那如果想学习自己搭建一个神经网络层,需要包含哪些部分呢?
如下图所示,一个神经网络层需要有数据输入、数据输出、激活函数。
创建一个神经网络层
#创建一个神经网络层
def add_layer(input,in_size,out_size,activation_function=None):
"""
:param input: 数据输入
:param in_size: 输入大小(前一层神经元个数)
:param out_size: 输出大小(本层神经元个数)
:param activation_function: 激活函数(默认没有)
:return:
"""
Weight=tf.Variable(tf.random_normal([in_size,out_size]) )
biases=tf.Variable(tf.zeros([1,out_size]) +0.1 )
W_mul_x_plus_b=tf.matmul(input,Weight) + biases
#根据是否有激活函数
if activation_function == None:
output=W_mul_x_plus_b
else:
output=activation_function(W_mul_x_plus_b)
return output
分析:
参数如下,
input:输入个数
in_size: 当前层的输入的个数
out_size:当前层的输出的个数(即当前层神经元的个数)
activation_function:激活函数(输入层无激活函数,仅起到传递信号的作用,卷积层、池化层等含有激活函数。)
内部运算如下:权值初始化(Weight):大小为 in_size * out_size;
偏置初始化(biases):大小为