Deep learning
文章平均质量分 94
Qiang__zi
...
展开
-
win10+python2.7+caffe+vs2015
1、下载并安装Acaconda3(将Anaconda路径添加至环境变量)https://www.anaconda.com/download/2、修改python版本conda install python=3.6 //换成所需要的版本3、创建虚拟环境虚拟环境名称自定义,我将虚拟环境名称设置为py27,python版本需要指定conda create –n py27 pyt...原创 2019-10-17 19:59:59 · 993 阅读 · 0 评论 -
window10下labelme的安装与使用(图像分割中数据标注)
1、cmd进入命令行,安装labelme pip install labelme2、cmd进入命令行,输入labelme,打开labelme3、通过open打开单个图片或通过Open Dir打开整个文件夹中的图片(通过Next Image选择图片)4、点击Creat Polygons后,在图片中选出自己所需要的部分5、点击Save保存生成的json文件6、在j...原创 2019-10-16 14:59:23 · 2185 阅读 · 3 评论 -
Supervised Hashing for Image Retrieval via Image Representation Learning
Xia R. Supervised Hashing for Image Retrieval via Image Representation Learning[C]// AAAI Conference on Artificial Intelligence. 2014.摘要:散列是流行的用于大规模图像检索的近似最近邻搜索方法。将监督散列并入关于实体对的相似性/不相似性信息以改善散列函数学习的翻译 2016-12-12 12:25:51 · 1286 阅读 · 0 评论 -
ubuntu14.04安装skimage-0.14
最近做图像检索实验的时候用到了 skimage.measure.label查看了一下自己安装的skiamge为0.9.3版本,但是一直无法直接升级到0.13.0下载.gz文件进行本地安装也是一直出现错误,最后发现依赖环境出现了问题:Requires Distributionssix (>=1.7.3)scipy (>=0.17.0)pillow (>=2.1.0)net原创 2017-05-05 16:36:32 · 2284 阅读 · 1 评论 -
CS231n+assignment1(作业一)
一、第一个是KNN的代码,这里的trick是计算距离的三种方法,核心的话还是python和machine learning中非常实用的向量化操作,可以大大的提高计算速度。import numpy as np class KNearestNeighbor(object):#首先是定义一个处理KNN的类 """ a kNN classifier with L2 distance """转载 2017-06-25 11:01:33 · 2509 阅读 · 1 评论 -
python实现卷积层的前向后向传播过程
Convolution Layer Forward卷积层的前向激活过程,我们首先忽略激活层。认为f(x)=x,那么纯卷积层的前向激活公式如下: outn,f,ho,wo=conv(XP,W,b,params) outn,f,ho,wo=conv(XP,W,b,params) =∑c=0,ho=0,wo=0C−1,Ho−1,Wo−1XPn,c,ho∗S+(1:HH),转载 2017-10-17 22:36:48 · 3666 阅读 · 0 评论 -
caffe添加新层教程
描述一下本次要实现层的功能:正向直接copy传播,反向时将梯度放缩指定倍。这个层对一些特定的网络结构有很重要的辅助作用,比如有时我们的网络存在分支,但我们不希望某一分支影响之前层的更新,那么我们就将梯度放缩0倍。(1)创建HPP头文件diff_cutoff_layer.hpp不同功能类型的层所引的头文件也不同,具体大家可以到“caffe/include/caffe/转载 2017-10-27 23:45:24 · 227 阅读 · 0 评论 -
caffe经典网络代码资料总结
原文链接:http://blog.csdn.net/Quincuntial/article/details/72832136自2012年Alexnet赢得了ImageNet竞赛以来,深度学习(神经网络)得到了飞速发展,产生了许多的神经网络结构,本文主要总结Caffe中使用的神经网络(分类的神经网络),本文的神经网络作者都使用Caffe训练过,并在Kaggle的Intel癌症预测比赛中进转载 2017-11-21 11:12:56 · 260 阅读 · 0 评论 -
pytorch如何自定义自己的MyDatasets
PyTorch提供了一个工具函数torch.utils.data.DataLoader。所有其他数据集都应该进行子类化。所有子类应该override__len__和__getitem__,前者提供了数据集的大小,后者支持整数索引,范围从0到len(self)。class torch.utils.data.TensorDataset(data_tensor, target_tensor)包装原创 2017-11-16 09:51:45 · 4554 阅读 · 1 评论 -
cafffe数据层及参数
要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行。转载 2017-11-17 09:20:02 · 529 阅读 · 0 评论 -
TensorFlow-MNIST手写数字识别
import tensorflow as tfimport numpy as npfrom sklearn.utils import shufflefrom sklearn.preprocessing import OneHotEncoderimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'#导入MNIST数据集mnist = tf...原创 2019-03-30 16:42:13 · 163 阅读 · 0 评论 -
TensorFlow读取图片tf.gfile.FastGFile
tf.gfile.FastGFile()功能:读取图像参数:1、图像路径;2、读取方式(‘r’为utf-8,‘rb’为非utf-8)import tensorflow as tf import matplotlib.pyplot as plt#读取图像src_img = tf.gfile.FastGFile('lena.jpg', 'rb').read()with tf....原创 2019-06-05 09:56:32 · 2558 阅读 · 1 评论 -
TensorFlow实现简易的全连接网络模型
import tensorflow as tf import numpy as np#定义训练次数training_steps = 3000#定义输入的数据和对应标签在for循环中进行填充data = []label = []for i in range(200): x1 = np.random.uniform(-1, 1) x2 = np.random.uniform(0...原创 2019-06-04 16:30:11 · 965 阅读 · 0 评论 -
caffe添加python层读取图片数据进行分类任务
1、使用python搭建自己的网络,本文实现VGG16# -*- coding:utf-8 -*- import caffefrom caffe import layers as L, params as P, to_protofrom caffe.proto import caffe_pb2frozen_weight_param = dict(lr_mult=1)#权重...原创 2019-08-19 10:52:58 · 504 阅读 · 0 评论 -
Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
Kevin Lin , Jiwen Lu , Chu-Song Chen , Jie Zhou .IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016.摘要:在本文中,我们提出一种称为DeepBit的新的无监督深度学习方法来学习紧凑二进制描述符,用于有效的视觉对象匹配。不同于大多数翻译 2016-12-12 12:25:09 · 2112 阅读 · 0 评论 -
Supervised Learning of Semantics-Preserving Hashing via Deep Neural Networks for Large-Scale Image S
Yang H F, Lin K, Chen C S. Supervised Learning of Semantics-Preserving Hashing via Deep Neural Networks for Large-Scale Image Search[J]. Computer Science, 2015.摘要 :本文提出了一种监督深度散列方法,从大规模图像搜索的标翻译 2016-12-12 12:24:33 · 1104 阅读 · 0 评论 -
A Survey Of Methods For Colour Image Indexing And Retrieval In Image Databases
Schettini R, Ciocca G, Zuffi S, et al. A Survey Of Methods For Colour Image Indexing And Retrieval In Image Databases[J]. Color Imagingence Exploiting Digital, 2001, 1614:9--1.摘要:颜色是绝大多数基于内容翻译 2016-12-12 12:23:57 · 263 阅读 · 0 评论 -
R-CNN for Pose Estimation and Action Detection
R-CNN 用于姿态估计和动作检测Gkioxari G, Hariharan B, Girshick R, et al. R-CNNs for Pose Estimation and Action Detection[J]. Computer Science, 2014.摘要:本文提出使用卷积神经网络进行关键点(姿势)预测和无约束图片中人的行为分类。我们的方法包括根据正在处理的翻译 2016-12-10 15:31:30 · 1472 阅读 · 0 评论 -
Contextual Action Recognition with R*CNN
Gkioxari G(UC Berkeley), Girshick R(Microsoft Research), Malik J(UC Berkeley). Contextual Action Recognition with R*CNN[J]. 2015, 40(1):1080-1088.摘要:一张图片中会有多个线索来显示图片中人物正在做的动作,例如,一个慢跑运动员的姿势是慢跑所特有的动翻译 2016-12-10 15:33:05 · 1473 阅读 · 1 评论 -
机器学习常见算法分类
机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。学习方式根据数据类型的原创 2016-12-10 15:37:41 · 185 阅读 · 0 评论 -
如何选择机器学习算法
训练集有多大?如果是小训练集,高偏差/低方差的分类器(比如朴素贝叶斯)要比低偏差/高方差的分类器(比如k最近邻)具有优势,因为后者容易过拟合。然而随着训练集的增大,低偏差/高方差的分类器将开始具有优势(它们拥有更低的渐近误差),因为高偏差分类器对于提供准确模型不那么给力。一些常用算法的优缺点朴素贝叶斯: 巨简单,你只要做些算术就好了。倘若条件独立性假设确实满足,朴原创 2016-12-12 11:24:51 · 177 阅读 · 0 评论 -
Notes on Convolutional Neural Networks
1引言 这个文档是为了讨论CNN的推导和执行步骤的,并加上一些简单的扩展。因为CNN包含着比权重还多的连接,所以结构本身就相当于实现了一种形式的正则化了。另外CNN本身因为结构的关系,也具有某种程度上的平移不变性。这种特别的NN可以被认为是以数据驱动的形式在输入中可以自动学习过滤器来自动的提取特征。我们这里提出的推导是具体指2D数据和卷积的,但是也可以无障碍扩展到任意维度上。翻译 2016-12-12 11:25:34 · 523 阅读 · 0 评论 -
常见的几种优化方法
常见的几种最优化方法1. 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以原创 2016-12-12 11:27:14 · 8948 阅读 · 2 评论 -
最小二乘的几何意义及投影矩阵
什么是最小二乘?假设我们手上有n组成对的数据,{(xi,yi):i=1…n},为了探究y变量与x变量的关系,我们希望用一个多项式来匹配它,可是多项式中的系数怎么确定呢?拿来拼凑肯定是不行的,最小二乘法告诉我们,这个多项式的系数应该让每个点的误差的平方之和最小。(百度百科)最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘原创 2016-12-12 11:28:39 · 1631 阅读 · 0 评论 -
SSD: Single Shot MultiBox Detector
代码地址:https://github.com/weiliu89/caffe/tree/ssdLiu W, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox Detector[J]. Computer Science, 2015.Abstract这篇文章在既保证速度,又要保证精度的情况下,提出翻译 2016-12-12 12:18:04 · 751 阅读 · 0 评论 -
R-FCN:基于区域的全卷积网络来检测物体
Dai J, Li Y, He K, et al. R-FCN: Object Detection via Region-based Fully Convolutional Networks[J]. 2016.背景介绍 R-CNN 系列的方法,如 SPPnet、Fast R-CNN、Faster R-CNN 等方法在 Object Detection 上取得了很大的成功。这些方翻译 2016-12-12 12:18:58 · 3552 阅读 · 0 评论 -
FasterR-CNN
code在cpu下运行:http://www.cnblogs.com/justinzhang/p/5386837.html摘要目前最先进的目标检测网络需要先用区域建议算法推测目标位置,像SPPnet[7]和Fast R-CNN[5]这些网络已经减少了检测网络的运行时间,这时计算区域建议就成了瓶颈问题。本文中,我们介绍一种区域建议网络(Region Proposal Network,翻译 2016-12-12 12:19:29 · 1455 阅读 · 0 评论 -
Fast R-CNN
Girshick R,Microsoft Research. Fast R-CNN:Fast Region-based Convolutional Networks for object detection[J]. IEEE International Conference on Computer Vision, 2015:1440-1448.提出感兴趣区域池化(RoI pooling),翻译 2016-12-12 12:20:00 · 1272 阅读 · 0 评论 -
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
He K, Zhang X, Ren S, et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9):1904-16.针对翻译 2016-12-12 12:20:29 · 1211 阅读 · 0 评论 -
R-CNN
GirshickR, Donahue J, Darrell T (UC Berkeley). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[J]. Computer Science, 2014:580-587.为了解决随着图像增大待检测区域的数目呈平方上升的问题,将侯选框(regi翻译 2016-12-12 12:20:52 · 3259 阅读 · 0 评论 -
Deep Learning of Binary Hash Codes for Fast Image Retrieval
Lin K, Yang H F, Hsiao J H, et al. Deep learning of binary hash codes for fast image retrieval[C]// IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2015:27-35. 摘要:近似最近邻搜索是用于翻译 2016-12-12 12:23:18 · 909 阅读 · 0 评论